ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Order and the gapped phase of the Hubbard model: a plaquette dynamical mean field investigation

91   0   0.0 ( 0 )
 نشر من قبل Emanuel Gull
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The four-site DCA method of including intersite correlations in the dynamical mean field theory is used to investigate the metal-insulator transition in the Hubbard model. At half filling a gap-opening transition is found to occur as the interaction strength is increased beyond a critical value. The gapped behavior found in the 4-site DCA approximation is shown to be associated with the onset of strong antiferromagnetic and singlet correlations and the transition is found to be potential energy driven. It is thus more accurately described as a Slater phenomenon (induced by strong short ranged order) than as a Mott phenomenon. Doping the gapped phase leads to a non-Fermi-liquid state with a Fermi surface only in the nodal regions and a pseudogap in the antinodal regions at lower dopings $x lesssim 0.15$ and to a Fermi liquid phase at higher dopings.

قيم البحث

اقرأ أيضاً

115 - A. Weh , Y. Zhang , A. Ostlin 2021
To explore correlated electrons in the presence of local and non-local disorder, the Blackman-Esterling-Berk method for averaging over off-diagonal disorder is implemented into dynamical mean-field theory using tensor notation. The impurity model com bining disorder and correlations is solved using the recently developed fork tensor-product state solver, which allows one to calculate the single particle spectral functions on the real-frequency axis. In the absence of off-diagonal hopping, we establish exact bounds of the spectral function of the non-interacting Bethe lattice with coordination number $Z$. In the presence of interaction, the Mott insulating paramagnetic phase of the one-band Hubbard model is computed at zero temperature in alloys with site- and off-diagonal disorder. When the Hubbard $U$ parameter is increased, transitions from an alloy band-insulator through a correlated metal into a Mott insulating phase are found to take place.
We investigate the ground-state phase diagram of the spinful extended Haldane-Hubbard model on the honeycomb lattice using an exact-diagonalization, mean-field variational approach, and further complement it with the infinite density matrix renormali zation group, applied to an infinite honeycomb cylinder. This model, governed by both on-site and nearest-neighbor interactions, can result in two types of insulators with finite local order parameters, either with spin or charge ordering. Moreover, a third one, a topologically nontrivial insulator with nonlocal order, is also manifest. We test expectations of previous analyses in spinle
115 - A. Niyazi , D. Geffroy , 2021
We present a dynamical mean-field study of antiferromagnetic magnons in one-, two- and three-orbital Hubbard model of square and bcc cubic lattice at intermediate coupling strength. Weinvestigate the effect of anisotropy introduced by an external mag netic field or single-ion anisotropy.For the latter we tune continuously between the easy-axis and easy-plane models. We also analyzea model with spin-orbit coupling in cubic site-symmetry setting. The ordered states as well as themagnetic excitations are sensitive to even a small breaking ofSU(2)symmetry of the model andfollow the expectations of spin-wave theory as well as general symmetry considerations.
Nonequilibrium dynamical mean-field theory (DMFT) is developed for the case of the charge-density-wave ordered phase. We consider the spinless Falicov-Kimball model which can be solved exactly. This strongly correlated system is then placed in an uni form external dc electric field. We present a complete derivation for nonequilibrium dynamical mean-field theory Greens functions defined on the Keldysh-Schwinger time contour. We also discuss numerical issues involved in solving the coupled equations.
We study the one-band Hubbard model on the honeycomb lattice using a combination of quantum Monte Carlo (QMC) simulations and static as well as dynamical mean-field theory (DMFT). This model is known to show a quantum phase transition between a Dirac semi-metal and the antiferromagnetic insulator. The aim of this article is to provide a detailed comparison between these approaches by computing static properties, notably ground-state energy, single-particle gap, double occupancy, and staggered magnetization, as well as dynamical quantities such as the single-particle spectral function. At the static mean-field level local moments cannot be generated without breaking the SU(2) spin symmetry. The DMFT approximation accounts for temporal fluctuations, thus captures both the evolution of the double occupancy and the resulting local moment formation in the paramagnetic phase. As a consequence, the DMFT approximation is found to be very accurate in the Dirac semi-metallic phase where local moment formation is present and the spin correlation length small. However, in the vicinity of the fermion quantum critical point the spin correlation length diverges and the spontaneous SU(2) symmetry breaking leads to low-lying Goldstone modes in the magnetically ordered phase. The impact of these spin fluctuations on the single-particle spectral function -- textit{waterfall} features and narrow spin-polaron bands -- is only visible in the lattice QMC approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا