ترغب بنشر مسار تعليمي؟ اضغط هنا

An Imprint of Super-Structures on the Microwave Background due to the Integrated Sachs-Wolfe Effect

58   0   0.0 ( 0 )
 نشر من قبل Mark C. Neyrinck
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure hot and cold spots on the microwave background associated with supercluster and supervoid structures identified in the Sloan Digital Sky Survey Luminous Red Galaxy catalog. The structures give a compelling visual imprint, with a mean temperature deviation of 9.6 +/- 2.2 microK, i.e. above 4 sigma. We interpret this as a detection of the late-time Integrated Sachs-Wolfe (ISW) effect, in which cosmic acceleration from dark energy causes gravitational potentials to decay, heating or cooling photons passing through density crests or troughs. In a flat universe, the linear ISW effect is a direct signal of dark energy.

قيم البحث

اقرأ أيضاً

Cosmic structures leave an imprint on the microwave background radiation through the integrated Sachs-Wolfe effect. We construct a template map of the linear signal using the SDSS-III Baryon Acoustic Oscillation Survey at redshift 0.43 < z < 0.65. We verify the imprint of this map on the Planck CMB temperature map at the 97% confidence level and show consistency with the density-temperature cross-correlation measurement. Using this ISW reconstruction as a template we investigate the presence of ISW sources and further examine the properties of the Granett-Neyrinck-Szapudi supervoid and supercluster catalogue. We characterise the three-dimensional density profiles of these structures for the first time and demonstrate that they are significant structures. Model fits demonstrate that the supervoids are elongated along the line-of-sight and we suggest that this special orientation may be picked out by the void-finding algorithm in photometric redshift space. We measure the mean temperature profiles in Planck maps from public void and cluster catalogues. In an attempt to maximise the stacked ISW signal we construct a new catalogue of super-structures based upon local peaks and troughs of the gravitational potential. However, we do not find a significant correlation between these structures and the CMB temperature.
Small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of thi s tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshifts $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $Delta T_{f} approx -5.0pm3.7~mu K$ and a hot imprint of superclusters $Delta T_{f} approx 5.1pm3.2~mu K$ ; this is $sim1.2sigma$ higher than the expected $|Delta T_{f}| approx 0.6~mu K$ imprint of such super-structures in $Lambda$CDM. If we instead use an a posteriori selected filter size ($R/R_{v}=0.6$), we can find a temperature decrement as large as $Delta T_{f} approx -9.8pm4.7~mu K$ for voids, which is $sim2sigma$ above $Lambda$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.
68 - Anais Rassat 2009
We show that linear redshift distortions in the galaxy distribution can affect the ISW galaxy-temperature signal, when the galaxy selection function is derived from a redshift survey. We find this effect adds power to the ISW signal at all redshifts and is larger at higher redshifts. Omission of this effect leads to an overestimation of the dark energy density $Omega_Lambda$ as well as an underestimation of statistical errors. We find a new expression for the ISW Limber equation which includes redshift distortions, though we find that Limber equations for the ISW calculation are ill-suited for tomographic calculations when the redshift bin width is small. The inclusion of redshift distortions provides a new cosmological handle in the ISW spectrum, which can help constrain dark energy parameters, curvature and alternative cosmologies. Code is available on request and will soon be added as a module to the iCosmo platform (http://www.icosmo.org)
I present to this conference our latest measurements of the integrated Sachs-Wolfe (ISW) effect. After a brief review of the reasons for which this effect arises and of the technique to detect it by cross-correlating the cosmic microwave background ( CMB) with the large scale structure of the Universe (LSS), I describe the current state of the art measurement. This is obtained from a combined analysis of six different galaxy datasets, and has a significance level of ~ 4.5 sigma. I then describe the cosmological implications, which show agreement with a flat LCDM model with Omega_m = 0.20 +0.19 -0.11 at 95% confidence level. I finally show how these data can be used to constrain modified gravity theories, focusing in particular on the Dvali-Gabadaze-Porrati (DGP) model.
Based on CMB maps from the 2013 Planck Mission data release, this paper presents the detection of the ISW effect, i.e., the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4 sigma, depending on which method is used. We investigate three separate approaches, which cover essentially all previous studies, as well as breaking new ground. (i) Correlation of the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection is made using the lensing-induced bispectrum; the correlation between lensing and the ISW effect has a significance close to 2.5 sigma. (ii) Cross-correlation with tracers of LSS, yielding around 3 sigma significance, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) Aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yields a 4 sigma signal when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale compared to expectations. More recent catalogues give more moderate results, ranging from negligible to 2.5 sigma at most, but with a more consistent scale and amplitude, the latter being still slightly above what is expected from numerical simulations within LCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, which had already mapped these scales to the limits of cosmic variance. Plancks broader frequency coverage confirms that the signal is achromatic, bolstering the case for ISW detection. As a final step we use tracers of large-scale structure to filter the CMB data, presenting maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the current accelerated expansion of the Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا