ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational constraints on models for the interstellar magnetic field in the Galactic disk

112   0   0.0 ( 0 )
 نشر من قبل Hui Gillard Men
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our purpose is to place firm observational constraints on the three most widely used theoretical models for the spatial configuration of the large-scale interstellar magnetic field in the Galactic disk, namely, the ring, the axisymmetric and the bisymmetric field models. We use the rotation measures (RMs) of low-latitude Galactic pulsars and combine them with their dispersion measures and estimated distances to map out the line-of-sight component of the interstellar magnetic field in the near half of the Galactic disk. We then fit our map of the line-of-sight field to the three aforementioned theoretical field models and discuss the acceptability of each fit, in order to determine whether the considered field model is allowed by the pulsar data or not. Strictly speaking, we find that all three field models are ruled out by the pulsar data. Furthermore, none of them appears to perform significantly better than the others. From this we conclude that the large-scale interstellar magnetic field in the Galactic disk has a more complex pattern than just circular, axisymmetric or bisymmetric.



قيم البحث

اقرأ أيضاً

177 - B-G Andersson , S.B. Potter 2007
We present new multicolor photo-polarimetry of stars behind the Southern Coalsack. Analyzed together with multiband polarization data from the literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus clouds, we show that the wavele ngth of maximum polarization (lambda_max) is linearly correlated with the radiation environment of the grains. Using Far-Infrared emission data, we show that the large scatter seen in previous studies of lambda_max as a function of A_V is primarily due to line of sight effects causing some A_V measurements to not be a good tracer of the extinction (radiation field strength) seen by the grains being probed. The derived slopes in lambda_max vs. A_V, for the individual clouds, are consistent with a common value, while the zero intercepts scale with the average values of the ratios of total-to-selective extinction (R_V) for the individual clouds. Within each cloud we do not find direct correlations between lambda_max and R_V. The positive slope in consistent with recent developments in theory and indicating alignment driven by the radiation field. The present data cannot conclusively differentiate between direct radiative torques and alignment driven by H_2 formation. However, the small values of lambda_max(A_V=0), seen in several clouds, suggest a role for the latter, at least at the cloud surfaces. The scatter in the lambda_max vs. A_V relation is found to be associated with the characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We propose that this is partially due to locally increased plasma damping of the grain rotation caused by X-rays from the YSOs.
A high percentage of the astrophysically important RR Lyrae stars show a periodic amplitude and/or phase modulation of their pulsation cycles. More than a century after its discovery, this Blazhko effect still lacks acceptable theoretical understandi ng. In one of the plausible models for explaining the phenomenon, the modulation is caused by the effects of a magnetic field. So far, the available observational data have not allowed us to either support nor rule out the presence of a magnetic field in RR Lyrae stars. We intend to determine whether RR Lyrae stars are generally characterized by the presence of a magnetic field organized on a large scale. With the help of the FORS1 instrument at the ESO VLT we performed a spectropolarimetric survey of 17 relatively bright southern RR Lyrae stars, both Blazhko stars and non-modulated stars, and determined their mean longitudinal magnetic field with a typical error bar < 30 G. All our measurements of the mean longitudinal magnetic field resulted in null detections within 3 sigma. From our data we can set an upper limit for the strength of the dipole component of the magnetic fields of RR Lyrae stars to ~ 130 G. Because of the limitations intrinsic to the diagnostic technique, we cannot exclude the presence of higher order multipolar components. The outcome of this survey clarifies that the Blazhko modulation in the pulsation of RR Lyrae stars is not correlated with the presence of a strong, quasi-dipolar magnetic field.
We consider constraints on generalized tachyon field (GTF) models from latest observational data (including 182 gold SNIa data, the shift parameter, and the acoustic scale). We obtain at 68.3% confidence level $Omega_{rm m}=0.37pm0.01$, $k_0=0.09^{+0 .04}_{-0.03}$, $alpha=1.8^{+7.4}_{-0.7}$ (the best-fit values of the parameters) and $z_{q=0}sim 0.47-0.51$ (the transitional redshift) for GTF as dark energy component only; $k_0=0.21^{+0.20}_{-0.18}$, $alpha=0.57pm0.01$ and $z_{q=0}sim 0.49-0.68$ for GTF as unification of dark energy and dark matter. In both cases, GTF evolves like dark matter in the early universe. By applying model-comparison statistics and test with independent $H(z)$ data, we find GTF dark energy scenario is favored over the $Lambda$CDM model, and the $Lambda$CDM model is favored over GTF unified dark matter by the combined data. For GTF as dark energy component, the fluctuations of matter density is consistent with the growth of linear density perturbations. For GTF unified dark matter, the growth of GTF density fluctuations grow more slowly for $ato1$, meaning GTF do not behave as classical $Lambda$CDM scenarios.
Most dark energy models have the $Lambda$CDM as their limit, and if future observations constrain our universe to be close to $Lambda$CDM Bayesian arguments about the evidence and the fine-tuning will have to be employed to discriminate between the m odels. Assuming a baseline $Lambda$CDM model we investigate a number of quintessence and phantom dark energy models, and we study how they would perform when compared to observational data, such as the expansion rate, the angular distance, and the growth rate measurements, from the upcoming Dark Energy Spectroscopic Instrument (DESI) survey. We sample posterior likelihood surfaces of these dark energy models with Monte Carlo Markov Chains while using central values consistent with the Planck $Lambda$CDM universe and covariance matrices estimated with Fisher information matrix techniques. We find that for this setup the Bayes factor provides a substantial evidence in favor of the $Lambda$CDM model over most of the alternatives. We also investigated how well the CPL parametrization approximates various scalar field dark energy models, and identified the location for each dark energy model in the CPL parameter space.
We use a dynamical systems approach to study thawing quintessence models, using a multi-parameter extension of the exponential potential which can approximate the form of typical thawing potentials. We impose observational constraints using a compila tion of current data, and forecast the tightening of constraints expected from future dark energy surveys, as well as discussing the relation of our results to analytical constraints already in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا