ترغب بنشر مسار تعليمي؟ اضغط هنا

FUSE Observations of the Loop I/Local Bubble Interaction Region

44   0   0.0 ( 0 )
 نشر من قبل Eric J. Korpela
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We used the FUSE (Far Ultraviolet Spectroscopic Explorer) satellite to observe OVI emission along two sightlines towards the edge of the interaction zone (IZ) between the Loop I superbubble and the Local Bubble. One sightline was chosen because material in the interaction zone blocks distant X-ray emission, and should thus do the same for non-local OVI emission. We measured an OVI intensity of I_shadowed = 2750 +- 550 L.U. along this `Shadowed sightline, and I_unshadowed = 10800 +- 1200 L.U. along the other sightline. Given these results, very little (< 800 L.U.) of the emission arises from the near side of the interaction zone, which likely has an HI column density of about 4e+20 cm-2 along the `Shadowed sightline. The OVI emission arising within Loop I (~1e+4 L.U.) is probably associated with gas of n_e ~ 0.1 cm-3 and an emitting pathlength of ~1.2 pc, suggesting it arises at interfaces rather than from gas filling Loop I. In contrast, the CIII emission is similar along both sightlines, indicating that much of the emission likely arises on the near side of the interaction zone.

قيم البحث

اقرأ أيضاً

We use the Mopra radio telescope to test for expansion of the molecular gas associated with the bubble HII region RCW120. A ring, or bubble, morphology is common for Galactic HII regions, but the three-dimensional geometry of such objects is still un clear. Detected near- and far-side expansion of the associated molecular material would be consistent with a three-dimensional spherical object. We map the $J = 1rightarrow 0$ transitions of $^{12}$CO, $^{13}$CO, C$^{18}$O, and C$^{17}$O, and detect emission from all isotopologues. We do not detect the $0_0rightarrow 1_{-1} E$ masing lines of CH$_3$OH at 108.8939 GHz. The strongest CO emission is from the photodissociation region (PDR), and there is a deficit of emission toward the bubble interior. We find no evidence for expansion of the molecular material associated with RCW120 and therefore can make no claims about its geometry. The lack of detected expansion is roughly in agreement with models for the time-evolution of an HII region like RCW120, and is consistent with an expansion speed of $< 1.5, {rm km, s^{-1}}$. Single-position CO spectra show signatures of expansion, which underscores the importance of mapped spectra for such work. Dust temperature enhancements outside the PDR of RCW120 coincide with a deficit of emission in CO, confirming that these temperature enhancements are due to holes in the RCW120 PDR. H$alpha$ emission shows that RCW120 is leaking $sim5%$ of the ionizing photons into the interstellar medium (ISM) through PDR holes at the locations of the temperature enhancements. H-alpha emission also shows a diffuse halo from leaked photons not associated with discrete holes in the PDR. Overall $25pm10%$ of all ionizing photons are leaking into the nearby ISM.
Chandra observations toward the nearby molecular cloud MBM12 show unexpectedly strong and nearly equal foreground O VIII and O VII emission. As the observed portion of MBM12 is optically thick at these energies, the emission lines must be formed near by, coming either from the Local Bubble (LB) or charge exchange with ions from the Sun. Equilibrium models for the LB predict stronger O VII than O VIII, so these results suggest that the LB is far from equilibrium or a substantial portion of O VIII is from another source, such as charge exchange within the Solar system. Despite the likely contamination, we can combine our results with other EUV and X-ray observations to reject LB models which posit a cool recombining plasma as the source of LB X-rays.
Aims. We present the first high-resolution non-equilibrium ionization simulation of the joint evolution of the Local Bubble (LB) and Loop I superbubbles in the turbulent supernova-driven interstellar medium (ISM). The time variation and spatial distr ibution of the Li-like ions Civ, Nv, and Ovi inside the LB are studied in detail. Methods. This work uses the parallel adaptive mesh refinement code EAF-PAMR coupled to the newly developed atomic and molecular plasma emission module E(A+M)PEC, featuring the time-dependent calculation of the ionization structure of H through Fe, using the latest revision of solar abundances. The finest AMR resolution is 1 pc within a grid that covers a representative patch of the Galactic disk (with an area of 1 kpc^2 in the midplane) and halo (extending up to 10 kpc above and below the midplane). Results. The evolution age of the LB is derived by the match between the simulated and observed absorption features of the Li-like ions Civ, Nv, and Ovi . The modeled LB current evolution time is bracketed between 0.5 and 0.8 Myr since the last supernova reheated the cavity in order to have N(Ovi) < 8 times 10^12 cm-2, log[N(Civ) /N(Ovi) ] < -0.9 and log[N(Nv) /N(Ovi) ] < -1 inside the simulated LB cavity, as found in Copernicus, IUE, GHRS-IST and FUSE observations.
53 - A. Aloisi 2003
We report on new FUSE far-UV spectroscopy of the most metal-poor blue compact dwarf galaxy I Zw 18. The new data represent an improvement over previous FUSE spectra by a factor of 1.7 in the signal-to-noise. Together with a larger spectral coverage ( 917-1188 angstroms), this allows us to characterize absorption lines in the interstellar medium with unprecedented accuracy. The kinematics averaged over the large sampled region shows no clear evidence of gas inflows or outflows. The H I absorption is interstellar with a column density of 2.2 (+0.6,-0.5} * 10^21 cm^(-2). A conservative 3 sigma upper limit of 5.25 * 10^(14) cm^(-2) is derived for the column density of diffuse H_2. From a simultaneous fitting of metal absorption lines in the interstellar medium, we infer the following abundances: [Fe/H] = -1.76 +/- 0.12, [O/H] = -2.06 +/- 0.28, [Si/H] = -2.09 +/- 0.12, [Ar/H] = -2.27 +/- 0.13, and [N/H] = -2.88 +/- 0.11. This is in general several times lower than in the H II regions. The only exception is iron, whose abundance is the same. The abundance pattern of the interstellar medium suggests ancient star-formation activity with an age of at least a Gyr that enriched the H I phase. Around 470 SNe Ia are required to produce the iron content. A more recent episode that started 10 to several 100 Myr ago is responsible for the additional enrichment of alpha-elements and nitrogen in the H II regions.
The Sun is located in a low-density region of the interstellar medium partially filled with hot gas that is the likely result of several nearby supernova explosions within the last 10 Myr. Here we use astrometric data to show that part of the Scorpiu s-Centaurus OB association was located closer to the present position of the Sun 5-7 Myr ago than today. Evolutionary synthesis models indicate that the association must have experienced ~20 supernova explosions in the last 10-12 Myr, a prediction that is supported by the detection of four or five runaway stars escaping from it. The ~6 SNe produced by the Lower Centaurus Crux subgroup are likely responsible for the creation of the Local Bubble.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا