ﻻ يوجد ملخص باللغة العربية
A mesoscopic ring subject to the Rashba spin-orbit interaction and sequentially coupled to an interacting quantum dot, in the presence of Aharonov-Bohm flux, is proposed as a flux tunable tunneling diode. The analysis of the conductance by means of the nonequilibrium Greens function technique, shows an intrinsic bistability at varying the Aharonov-Bohm flux when 2U > pi Gamma, U being the charging energy on the dot and Gamma the effective resonance width. The bistability properties are discussed in connection with spin-switch effects and logical storage device applications.
We study the time-dependent transport of charge and spin through a ring-shaped region sequentially coupled to a weakly interacting quantum dot in the presence of an Aharonov-Bohm flux and spin-orbit interaction. The time-dependent modulation of the s
With an atomic force microscope a ring geometry with self-aligned in-plane gates was directly written into a GaAs/AlGaAs-heterostructure. Transport measurements in the open regime show only one transmitting mode and Aharonov-Bohm oscillations with mo
We suggest a system in which the amplitude of macroscopic flux tunneling can be modulated via the Aharonov-Casher effect. The system is an rf-SQUID with the Josephson junction replaced by a Bloch transistor -- two junctions separated by a small super
The Josephson current through an Aharonov-Bohm (AB) interferometer, in which a quantum dot (QD) is situated on one arm and a magnetic flux $Phi$ threads through the ring, has been investigated. With the existence of the magnetic flux, the relation of
We study transport of non-interacting electrons through two quantum dot molecules embedded in an Aharonov-Bohm interferometer. The system in equilibrium exhibits bound states in the continuum (BIC) and total suppression of transmission. It also shows