ترغب بنشر مسار تعليمي؟ اضغط هنا

Small-x Physics and the Detection of UHE Neutrinos

105   0   0.0 ( 0 )
 نشر من قبل Carlos Merino
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate both the tau lepton energy loss produced by photonuclear interactions and the neutrino charged current cross section at ultra-high energies, both relevant to neutrino bounds with Earth-skimming tau neutrinos.



قيم البحث

اقرأ أيضاً

We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setu p as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.
107 - M. F. McDermott 2000
A personal summary of the discussions which took place at the informal meeting in Amirim, Israel from June 1-4 2000, concerning the dipole picture of small-$x$ physics is presented. The broad aim of the meeting was to address the question ``Has HERA reached a new QCD regime (at small $x$) ?. The new regime in question is the high-density, but weak-coupling, limit of perturbative QCD.
We derive analytic expressions, and approximate them in closed form, for the effective detection aperture for Cerenkov radio emission from ultra-high-energy neutrinos striking the Moon. The resulting apertures are in good agreement with recent Monte Carlo simulations and support the conclusion of James & Protheroe (2009)that neutrino flux upper limits derived from the GLUE search (Gorham et al.2004) were too low by an order of magnitude. We also use our analytic expressions to derive scaling laws for the aperture as a function of observational and lunar parameters. We find that at low frequencies downward-directed neutrinos always dominate, but at higher frequencies, the contribution from upward-directed neutrinos becomes increasingly important, especially at low neutrino energies. Detecting neutrinos from Earth near the GZK regime will likely require radio telescope arrays with extremely large collecting area and hundreds of hour of exposure time. Higher energy neutrinos are most easily detected using lower frequencies. Lunar surface roughness is a decisive factor for obtaining detections at higher frequencies and higher energies.
181 - V. Berezinsky 2011
We reconsider the model of neutrino production during the bright phase, first suggested in 1977, in the light of modern understanding of the role of Pop III stars and acceleration of particles in supernova shocks. We concentrate on the production of cosmogenic UHE neutrinos in supernova explosions that accompany the death of Pop III stars. Accelerated protons produce neutrinos in collisions with CMB photons. We deliberately use simplified assumptions which make our results transparent. Pop III stars are assumed to be responsible for the reionization of the universe as observed by WMAP. Since the evolution of Pop III stars is much faster than the Hubble rate, we consider the burst of UHE proton production to occur at fixed redshift (z_b=10-20). We discuss the formation of collisionless shocks and particle acceleration in the early universe. The composition of accelerated particles is expected to be proton dominated. A simple calculation is presented to illustrate the fact that the diffuse neutrinos flux from the bright phase burst is concentrated in a relatively narrow range around $7.5 times 10^{15}(20/z_b)^2$ eV. The $ u_mu$ flux may be detectable by IceCube without violating the cascade upper limit and the expected energetics of SNe associated with Pop III stars. A possible signature of the neutrino production from Pop III stars may be the detection of resonant neutrino events. For the burst at $z_b=20$ and $bar{ u}_e$-flux at the cascade upper limit, the number of resonant events in IceCube may be as high as 10 events in 5 years of observations. These events have equal energies, $E=6.3times 10^{15}$ eV, in the form of e-m cascades. Given the large uncertainties in the existing predictions of UHE cosmogenic neutrino fluxes, we argue that neutrinos from the first stars might become one of the most reliable hopes for UHE neutrino astronomy.
187 - G. J. Stephenson , Jr. 2004
If the sterile neutrino mass matrix in an otherwise conventional seesaw model has a rank less than the number of flavors, it is possible to produce pseudo-Dirac neutrinos. In a two-flavor, sterile rank 1 case, we demonstrate analytic conditions for l arge active mixing induced by the existence of (and coupling to) the sterile neutrino components. For the three-flavor, rank 1 case, ``3+2 scenarios with large mixing also devolve naturally as we show by numerical examples. We observe that, in this approach, small mass differences can develop naturally without any requirement that masses themselves are small. Additionally, we show that significant three channel mixing and limited experimental resolution can combine to produce extracted two channel mixing parameters at variance with the actual values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا