ﻻ يوجد ملخص باللغة العربية
The properties of strongly gravitating systems suggest that field theory overcounts the states of a system. Reducing the number of degrees of freedom, without abandoning the notion of effective field theory, may be achieved through a connection between the ultraviolet and infrared cutoffs. We provide an implementation of this idea within the Wilsonian approach to the renormalization group. We derive an exact flow equation that describes the evolution of the effective action. We discuss the implications for the existence of infrared fixed points and the running of couplings. We also give an alternative derivation in the context of the perturbative renormalization group.
We discuss shallow resonances in the nonrelativistic scattering of two particles using an effective field theory (EFT) that includes an auxiliary field with the quantum numbers of the resonance. We construct the manifestly renormalized scattering amp
We explore the effects on nuclear bulk properties of using regularization cutoffs larger than the nucleon mass within the chiral effective field theory using a power counting that ensures order-by-order renormalization in the two-nucleon system. To d
While no-hair theorems forbid isolated black holes from possessing permanent moments beyond their mass, electric charge, and angular momentum, research over the past two decades has demonstrated that a black hole interacting with a time-dependent bac
We continue our study of effective field theory via homotopy transfer of $L_infty$-algebras, and apply it to tree-level non-Wilsonian effective actions of the kind discussed by Sen in which the modes integrated out are comparable in mass to the modes
We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar f