ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Field Theory with a Variable Ultraviolet Cutoff

36   0   0.0 ( 0 )
 نشر من قبل Nikolaos Tetradis
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Nikolaos Tetradis




اسأل ChatGPT حول البحث

The properties of strongly gravitating systems suggest that field theory overcounts the states of a system. Reducing the number of degrees of freedom, without abandoning the notion of effective field theory, may be achieved through a connection between the ultraviolet and infrared cutoffs. We provide an implementation of this idea within the Wilsonian approach to the renormalization group. We derive an exact flow equation that describes the evolution of the effective action. We discuss the implications for the existence of infrared fixed points and the running of couplings. We also give an alternative derivation in the context of the perturbative renormalization group.

قيم البحث

اقرأ أيضاً

We discuss shallow resonances in the nonrelativistic scattering of two particles using an effective field theory (EFT) that includes an auxiliary field with the quantum numbers of the resonance. We construct the manifestly renormalized scattering amp litude up to next-to-leading order in a systematic expansion. For a narrow resonance, the amplitude is perturbative except in the immediate vicinity of the resonance poles. It naturally has a zero in the low-energy region, analogous to the Ramsauer-Townsend effect. For a broad resonance, the leading-order amplitude is nonperturbative almost everywhere in the regime of validity of the EFT. We regain the results of an EFT without the auxiliary field, which is equivalent to the effective-range expansion with large scattering length and effective range. We also consider an additional fine tuning leading to a low-energy amplitude zero even for a broad resonance. We show that in all cases the requirement of renormalizability when the auxiliary field is not a ghost ensures the resonance poles are in the lower half of the complex momentum plane, as expected by other arguments. The systematic character of the EFT expansion is exemplified with a toy model serving as underlying theory.
We explore the effects on nuclear bulk properties of using regularization cutoffs larger than the nucleon mass within the chiral effective field theory using a power counting that ensures order-by-order renormalization in the two-nucleon system. To d o so we calculate ground-state properties of the $^{16}$O nucleus in the Hartree--Fock approach in a basis made up of plane waves confined in a cube. We find a strong sensitivity to the regularization cutoff through the counter-terms in attractive singular partial waves and to the correction for spurious deeply bound states. This questions the possibility of testing in nuclei the renormalization-group invariance of renormalizable potentials from chiral effective field theory at leading order. A possible way out of this problem is proposed.
While no-hair theorems forbid isolated black holes from possessing permanent moments beyond their mass, electric charge, and angular momentum, research over the past two decades has demonstrated that a black hole interacting with a time-dependent bac kground scalar field will gain an induced scalar charge. In this paper, we study this phenomenon from an effective field theory (EFT) perspective. We employ a novel approach to constructing the effective point-particle action for the black hole by integrating out a set of composite operators localized on its worldline. This procedure, carried out using the in-in formalism, enables a systematic accounting of both conservative and dissipative effects associated with the black holes horizon at the level of the action. We show that the induced scalar charge is inextricably linked to accretion of the background environment, as both effects stem from the same parent term in the effective action. The charge, in turn, implies that a black hole can radiate scalar waves and will also experience a fifth force. Our EFT correctly reproduces known results in the literature for massless scalars, but now also generalizes to massive real scalar fields, allowing us to consider a wider range of scenarios of astrophysical interest. As an example, we use our EFT to study the early inspiral of a black hole binary embedded in a fuzzy dark matter halo.
We continue our study of effective field theory via homotopy transfer of $L_infty$-algebras, and apply it to tree-level non-Wilsonian effective actions of the kind discussed by Sen in which the modes integrated out are comparable in mass to the modes that are kept. We focus on the construction of effective actions for string states at fixed levels and in particular on the construction of weakly constrained double field theory. With these examples in mind, we discuss closed string theory on toroidal backgrounds and resolve some subtle issues involving vertex operators, including the proper form of cocycle factors and of the reflector state. This resolves outstanding issues concerning the construction of covariant closed string field theory on toroidal backgrounds. The weakly constrained double field theory is formally obtained from closed string field theory on a toroidal background by integrating out all but the doubly massless states and homotopy transfer then gives a prescription for determining the theorys vertices and symmetries. We also discuss consistent truncation in the context of homotopy transfer.
246 - Hael Collins , R. Holman , 2012
We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar f ield taken to be in their free vacuum states at a finite initial time, we study the effects from the heavy field on the dynamics of the light field by analyzing the equation of motion for the expectation value of the light background field. New terms appear which cannot arise from a local action of an effective field theory in terms of the light field, though they disappear in the adiabatic limit. We discuss the origins of these terms as well as their possible implications for time dependent situations such as inflation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا