ترغب بنشر مسار تعليمي؟ اضغط هنا

The period and amplitude changes of Polaris (alpha UMi) from 2003 to 2007 measured with SMEI

40   0   0.0 ( 0 )
 نشر من قبل Steve Spreckley
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of 4.5 years of high precision (0.1%) space-based photometric measurements of the Cepheid variable Polaris, obtained by the broad band Solar Mass Ejection Imager (SMEI) instrument on board the Coriolis satellite. The data span from April 2003 to October 2007, with a cadence of 101 minutes and a fill factor of 70%. We have measured the mean peak to peak amplitude across the whole set of observations to be 25 mmag. There is, however, a clear trend that the size of the oscillations has been increasing during the observations, with peak to peak variations less than 22 mmag in early 2003, increasing to around 28 mmag by October 2007, suggesting that the peak to peak amplitude is increasing at a rate of 1.39 pm 0.12 mmag yr^{-1}. Additionally, we have combined our new measurements with archival measurements to measure a rate of period change of 4.90 pm 0.26 s yr^{-1} over the last 50 years. However, there is some suggestion that the period of Polaris has undergone a recent decline, and combined with the increased amplitude, this could imply evolution away from an overtone pulsation mode into the fundamental or a double pulsation mode depending on the precise mass of Polaris.


قيم البحث

اقرأ أيضاً

As part of a program to determine dynamical masses of Cepheids, we have imaged the nearest and brightest Cepheid, Polaris, with the Hubble Space Telescope Wide Field Planetary Camera 2 and Wide Field Camera 3. Observations were obtained at three epoc hs between 2007 and 2014. In these images, as in HST frames obtained in 2005 and 2006, which we discussed in a 2008 paper, we resolve the close companion Polaris Ab from the Cepheid Polaris Aa. Because of the small separation and large magnitude difference between Polaris Aa and Ab, we used PSF deconvolution techniques to carry out astrometry of the binary. Based on these new measurements, we have updated the elements for the 29.59 yr orbit. Adopting the distance to the system from the recent Gaia Data Release 2, we find a dynamical mass for the Cepheid of 3.45 +/- 0.75 Msun, although this is preliminary, and will be improved by CHARA measurements covering periastron. As is the case for the recently determined dynamical mass for the Cepheid V1334 Cyg, the mass of Polaris is significantly lower than the evolutionary mass predicted by fitting to evolutionary tracks in the HR diagram. We discuss several questions and implications raised by these measurements, including the pulsation mode, which instability-strip crossing the stars are in, and possible complications such as rotation, mass loss, and binary mergers. The distant third star in the system, Polaris B, appears to be older than the Cepheid, based on isochrone fitting. This may indicate that the Cepheid Polaris is relatively old and is the result of a binary merger, rather than being a young single star.
We present a first results from a long-term program of a radial velocity study of Cepheid Polaris (F7 Ib) aimed to find amplitude and period of pulsations and nature of secondary periodicities. 264 new precise radial velocity measurements were obtain ed during 2004-2007 with the fiber-fed echelle spectrograph Bohyunsan Observatory Echelle Spectrograph (BOES) of 1.8m telescope at Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. We find a pulsational radial velocity amplitude and period of Polaris for three seasons of 2005.183, 2006.360, and 2007.349 as 2K = 2.210 +/- 0.048 km/s, 2K = 2.080 +/- 0.042 km/s, and 2K = 2.406 +/- 0.018 km/s respectively, indicating that the pulsational amplitudes of Polaris that had decayed during the last century is now increasing rapidly. The pulsational period was found to be increasing too. This is the first detection of a historical turnaround of pulsational amplitude change in Cepheids. We clearly find the presence of additional radial velocity variations on a time scale of about 119 days and an amplitude of about +/- 138 m/s, that is quasi-periodic rather than strictly periodic. We do not confirm the presence in our data the variation on a time scale 34-45 days found in earlier radial velocity data obtained in 80s and 90s. We assume that both the 119 day quasi-periodic, noncoherent variations found in our data as well as 34-45 day variations found before can be caused by the 119 day rotation periods of Polaris and by surface inhomogeneities such as single or multiple spot configuration varying with the time.
The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is an atmospheric Cherenkov telescope (ACT) that uses a large mirror array to achieve a relatively low energy threshold. For sources with Crab-like spectra, at high elevations, the dete ctor response peaks near 100 GeV. Gamma-ray burst (GRB) observations have been a high priority for the STACEE collaboration since the inception of the experiment. We present the results of 20 GRB follow-up observations at times ranging from 3 minutes to 15 hours after the burst triggers. Where redshift measurements are available, we place constraints on the intrinsic high-energy spectra of the bursts.
We present observations of Sakurais Object obtained at 1-5um between 2003 and 2007. By fitting a radiative transfer model to an echelle spectrum of CO fundamental absorption features around 4.7um, we determine the excitation conditions in the line-fo rming region. We find 12C/13C~3.5, consistent with CO originating in ejecta processed by the very late thermal pulse, rather than in the pre-existing planetary nebula. We demonstrate the existence of 2.2e-6<M<2.7e-6 Msun of CO ejecta outside the dust, forming a high-velocity wind of 500+/-80 km/s. We find evidence for significant weakening of the CO band and cooling of the dust around the central star between 2003 and 2005. The gas and dust temperatures are implausibly high for stellar radiation to be the sole contributor.
Imaging and spectroscopy of Neptunes thermal infrared emission is used to assess seasonal changes in Neptunes zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Ou r aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is $pm$5 K at 1 mbar and $pm$3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane). At low and midlatitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 {mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium suggests a symmetric meridional circulation with cold air rising at mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the equator and poles (super-equilibrium para-H2 conditions). The most significant atmospheric changes are associated with the polar vortex (absent in 1989).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا