ترغب بنشر مسار تعليمي؟ اضغط هنا

Kleinberg navigation on anisotropic lattices

17   0   0.0 ( 0 )
 نشر من قبل James Bagrow
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Kleinberg problem of navigation in Small World networks when the underlying lattice is stretched along a preferred direction. Extensive simulations confirm that maximally efficient navigation is attained when the length $r$ of long-range links is taken from the distribution $P({bf r})sim r^{-alpha}$, when the exponent $alpha$ is equal to 2, the dimension of the underlying lattice, regardless of the amount of anisotropy, but only in the limit of infinite lattice size, $Ltoinfty$. For finite size lattices we find an optimal $alpha(L)$ that depends strongly on $L$. The convergence to $alpha=2$ as $Ltoinfty$ shows interesting power-law dependence on the anisotropy strength.

قيم البحث

اقرأ أيضاً

We study bond percolation on several four-dimensional (4D) lattices, including the simple (hyper) cubic (SC), the SC with combinations of nearest neighbors and second nearest neighbors (SC-NN+2NN), the body-centered cubic (BCC), and the face-centered cubic (FCC) lattices, using an efficient single-cluster growth algorithm. For the SC lattice, we find $p_c = 0.1601312(2)$, which confirms previous results (based on other methods), and find a new value $p_c=0.035827(1)$ for the SC-NN+2NN lattice, which was not studied previously for bond percolation. For the 4D BCC and FCC lattices, we obtain $p_c=0.074212(1)$ and 0.049517(1), which are substantially more precise than previous values. We also find critical exponents $tau = 2.3135(5)$ and $Omega = 0.40(3)$, consistent with previous numerical results and the recent four-loop series result of Gracey [Phys. Rev. D 92, 025012, (2015)].
We study bond percolation on the simple cubic (SC) lattice with various combinations of first, second, third, and fourth nearest-neighbors by Monte Carlo simulation. Using a single-cluster growth algorithm, we find precise values of the bond threshol ds. Correlations between percolation thresholds and lattice properties are discussed, and our results show that the percolation thresholds of these and other three-dimensional lattices decrease monotonically with the coordination number $z$ quite accurately according to a power law $p_{c} sim z^{-a}$, with exponent $a = 1.111$. However, for large $z$, the threshold must approach the Bethe lattice result $p_c = 1/(z-1)$. Fitting our data and data for lattices with additional nearest neighbors, we find $p_c(z-1)=1+1.224 z^{-1/2}$.
The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry and the re plica method. We find that the conjecture does not give the exact answer but leads to locations slightly away from the numerically reliable data. We propose an improved conjecture to give more precise predictions of the multicritical points than the conventional one. This improvement is inspired by a new point of view coming from renormalization group and succeeds in deriving very consistent answers with many numerical data.
We investigate the critical properties of the Ising model in two dimensions on {it directed} small-world lattice with quenched connectivity disorder. The disordered system is simulated by applying the Monte Carlo update heat bath algorithm. We calcul ate the critical temperature, as well as the critical exponents $gamma/ u$, $beta/ u$, and $1/ u$ for several values of the rewiring probability $p$. We find that this disorder system does not belong to the same universality class as the regular two-dimensional ferromagnetic model. The Ising model on {it directed} small-world lattices presents in fact a second-order phase transition with new critical exponents which do not dependent of $p$, but are identical to the exponents of the Ising model and the spin-1 Blume-Capel model on {it directed} small-world network.
Chase-Escape is a simple stochastic model that describes a predator-prey interaction. In this model, there are two types of particles, red and blue. Red particles colonize adjacent empty sites at an exponential rate $lambda_{R}$, whereas blue particl es take over adjacent red sites at exponential rate $lambda_{B}$, but can never colonize empty sites directly. Numerical simulations suggest that there is a critical value $p_{c}$ for the relative growth rate $p:=lambda_{R}/lambda_{B}$. When $p<p_{c}$, mutual survival of both types of particles has zero probability, and when $p>p_{c}$ mutual survival occurs with positive probability. In particular, $p_{c} approx 0.50$ for the square lattice case ($mathbb Z^{2}$). Our simulations provide a plausible explanation for the critical value. Near the critical value, the set of occupied sites exhibits a fractal nature, and the hole sizes approximately follow a power-law distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا