ﻻ يوجد ملخص باللغة العربية
Static quark-anti-quark potential encodes important information on the chromodynamical interaction between color charges, and recent lattice results show its very nontrivial behavior near the deconfinement temperature $T_c$. In this paper we study such potential in the framework of the ``magnetic scenario for the near Tc QCD plasma, and particularly focus on the linear part (as quantified by its slope, the tension) in the potential as well as the strong splitting between the free energy and internal energy. By using an analytic ``ellipsoidal bag model, we will quantitatively relate the free energy tension to the magnetic condensate density and relate the internal energy tension to the thermal monopole density. By converting the lattice results for static potential into density for thermal monopoles we find the density to be very large around Tc and indicate at quantum coherence, in good agreement with direct lattice calculation of such density. A few important consequences for heavy ion collisions phenomenology will also be discussed.
In this work, we study systematically the mass splittings of the $qqbar{Q}bar{Q}$ ($q=u$, $d$, $s$ and $Q=c$, $b$) tetraquark states with the color-magnetic interaction by considering color mixing effects and estimate roughly their masses. We find th
In the framework of the color-magnetic interaction, we systematically investigate the mass spectrum of the tetraquark states composed of four heavy quarks with the $QQbar Qbar Q$ configuration in this work. We also show their strong decay patterns. S
Very recently, the LHCb Collaboration observed distinct structures with the $ccbar{c}bar{c}$ in the $J/Psi$-pair mass spectrum. In this work, we construct four scalar ($J^{PC} = 0^{++}$) $[8_c]_{Qbar{Q^prime}}otimes [8_c]_{Q^prime bar{Q}}$ type curre
We have studied the masses for fully open-flavor tetraquark states $bcbar{q}bar{s}$ and $scbar{q}bar{b}$ with quantum numbers $J^{P}=0^{+},1^{+}$. We systematically construct all diquark-antiquark interpolating currents and calculate the two-point co
Making use of the gauge/string duality, it is possible to study some aspects of the string breaking phenomenon in the three quark system. Our results point out that the string breaking distance is not universal and depends on quark geometry. The esti