ﻻ يوجد ملخص باللغة العربية
We study the bosonic analog of Andreev reflection at a normal-superfluid interface where the superfluid is a boson condensate. We model the normal region as a zone where nonlinear effects can be neglected. Against the background of a decaying condensate, we identify a novel contribution to the current of reflected atoms. The group velocity of this Andreev reflected component differs from that of the normally reflected one. For a three-dimensional planar or two-dimensional linear interface Andreev reflection is neither specular nor conjugate.
Andreev reflection of quasiparticle excitations from quantized line vortices is reviewed in the isotropic B phase of superfluid $^3$He in the temperature regime of ballistic quasiparticle transport at $T leq 0.20,T_mathrm{c}$. The reflection from an
Using the time-dependent density-matrix renormalization group (tDMRG), we study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expect
Phonon-assisted electronic tunnelings through a vibrating quantum dot embedded between normal and superconducting leads are studied in the Kondo regime. In such a hybrid device, with the bias applied to the normal lead, we find a series of Kondo side
We propose a universal method to detect the specular Andreev reflection taking the simple two dimensional Weyl nodal-line semimetal-superconductor double-junction structure as an example. The quasiclassical quantization conditions are established for
In 1928, P. Dirac proposed a new wave equation to describe relativistic electrons. Shortly afterwards, O. Klein solved a simple potential step problem for the Dirac equation and stumbled upon an apparent paradox - the potential becomes transparent wh