ﻻ يوجد ملخص باللغة العربية
We study thermal broadening of the hole spectral function of the two-dimensional t-J model (and its extensions) within the non-crossing approximation with and without the contribution of optical phonons. We find that phonons at finite temperature broaden the lowest energy quasiparticle peak, however, the string excitations survive even for relatively strong electron-phonon coupling. Experimental angle resolved photo-emission spectroscopy(ARPES) results compare well with our calculations at finite temperature when we use strong electron-phonon coupling without any adhoc broadening. In addition, we have studied the role of vertex corrections and we find that their contribution allows us achieve the same overall agreement with the ARPES experimental results but using smaller values for the electron-phonon coupling.
Using the numerical renormalization group method, the effect due to a Kondo impurity in an $s$-wave superconductor is examined at finite temperature ($T$). The $T$-behaviors of the spectral function and the magnetic moment at the impurity site are ca
We consider a 3-dimensional quantum antiferromagnet which can be driven through a quantum critical point (QCP) by varying a tuning parameter g. Starting from the magnetically ordered phase, the N{e}el temperature will decrease to zero as the QCP is a
We study the effects of finite temperature on normal state properties of a metal near a quantum critical point to an antiferromagnetic or Ising-nematic state. At $T = 0$ bosonic and fermionic self-energies are traditionally computed within Eliashberg
Using a second-order perturbative Greens functions approach we determined the normal state single-particle spectral function $A(vec{k},omega)$ employing a minimal effective model for iron-based superconductors. The microscopic model, used before to s
We study a ground-state ansatz for the single-hole doped $t$-$J$ model in two dimensions via a variational Monte Carlo (VMC) method. Such a single-hole wave function possesses finite angular momenta generated by hidden spin currents, which give rise