ترغب بنشر مسار تعليمي؟ اضغط هنا

Fractional oscillator process with two indices

177   0   0.0 ( 0 )
 نشر من قبل Lee Peng Teo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new fractional oscillator process which can be obtained as solution of a stochastic differential equation with two fractional orders. Basic properties such as fractal dimension and short range dependence of the process are studied by considering the asymptotic properties of its covariance function. The fluctuation--dissipation relation of the process is investigated. The fractional oscillator process can be regarded as one-dimensional fractional Euclidean Klein-Gordon field, which can be obtained by applying the Parisi-Wu stochastic quantization method to a nonlocal Euclidean action. The Casimir energy associated with the fractional field at positive temperature is calculated by using the zeta function regularization technique.



قيم البحث

اقرأ أيضاً

141 - H. Boos , F. Gohmann , A. Klumper 2015
For the case of quantum loop algebras $mathrm U_q(mathcal L(mathfrak{sl}_{l + 1}))$ with $l = 1, 2$ we find the $ell$-weights and the corresponding $ell$-weight vectors for the representations obtained via Jimbos homomorphism, known also as evaluatio n representations. Then we find the $ell$-weights and the $ell$-weight vectors for the $q$-oscillator representations of Borel subalgebras of the same quantum loop algebras. This allows, in particular, to relate $q$-oscillator and prefundamental representations.
Analytic mass-spring chains with dispersionless pulse transfer and fractional revival are presented. These are obtained using the properties of the para-Racah polynomials. This provides classical analogs of the quantum spin chains that realize import ant tasks in quantum information: perfect state transfer and entanglement generation.
171 - Guo-cheng Wu 2010
The method of characteristics has played a very important role in mathematical physics. Preciously, it was used to solve the initial value problem for partial differential equations of first order. In this paper, we propose a fractional method of cha racteristics and use it to solve some fractional partial differential equations.
In this paper we investigate the solution of generalized distributed order diffusion equations with composite time fractional derivative by using the Fourier-Laplace transform method. We represent solutions in terms of infinite series in Fox $H$-func tions. The fractional and second moments are derived by using Mittag-Leffler functions. We observe decelerating anomalous subdiffusion in case of two composite time fractional derivatives. Generalized uniformly distributed order diffusion equation, as a model for strong anomalous behavior, is analyzed by using Tauberian theorem. Some previously obtained results are special cases of those presented in this paper.
The measurement of a quantum system becomes itself a quantum-mechanical process once the apparatus is internalized. That shift of perspective may result in different physical predictions for a variety of reasons. We present a model describing both sy stem and apparatus and consisting of a harmonic oscillator coupled to a field. The equation of motion is a quantum stochastic differential equation. By solving it we establish the conditions ensuring that the two perspectives are compatible, in that the apparatus indeed measures the observable it is ideally supposed to.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا