ترغب بنشر مسار تعليمي؟ اضغط هنا

On search for eV hidden sector photons in Super-Kamiokande and CAST experiments

178   0   0.0 ( 0 )
 نشر من قبل Javier Redondo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If light hidden sector photons exist, they could be produced through kinetic mixing with solar photons in the eV energy range. We propose to search for this hypothetical hidden photon flux with the Super-Kamiokande and/or upgraded CAST detectors. The proposed experiments are sensitive to mixing strengths as small as 10^-9 for hidden photon masses in the sub eV region and, in the case of non-observation, would improve limits recently obtained from photon regeneration laser experiments in this mass region.

قيم البحث

اقرأ أيضاً

391 - A. Wagner , G. Rybka , M. Hotz 2010
Hidden U(1) gauge symmetries are common to many extensions of the Standard Model proposed to explain dark matter. The hidden gauge vector bosons of such extensions may mix kinetically with Standard Model photons, providing a means for electromagnetic power to pass through conducting barriers. The ADMX detector was used to search for hidden vector bosons originating in an emitter cavity driven with microwave power. We exclude hidden vector bosons with kinetic couplings {chi} > 3.48x10-8 for masses less than 3 {mu}eV. This limit represents an improvement of more than two orders of magnitude in sensitivity relative to previous cavity experiments.
A search for neutron-antineutron ($n-bar{n}$) oscillation was undertaken in Super-Kamiokande using the 1489 live-day or $2.45 times 10^{34}$ neutron-year exposure data. This process violates both baryon and baryon minus lepton numbers by an absolute value of two units and is predicted by a large class of hypothetical models where the seesaw mechanism is incorporated to explain the observed tiny neutrino masses and the matter-antimatter asymmetry in the Universe. No evidence for $n-bar{n}$ oscillation was found, the lower limit of the lifetime for neutrons bound in ${}^{16}$O, in an analysis that included all of the significant sources of experimental uncertainties, was determined to be $1.9 times 10^{32}$~years at the 90% confidence level. The corresponding lower limit for the oscillation time of free neutrons was calculated to be $2.7 times 10^8$~s using a theoretical value of the nuclear suppression factor of $0.517 times 10^{23}$~s$^{-1}$ and its uncertainty.
GUT monopoles captured by the Suns gravitation are expected to catalyze proton decays via the Callan-Rubakov process. In this scenario, protons, which initially decay into pions, will ultimately produce u_{e}, u_{mu} and bar{ u}_{mu}. After undergo ing neutrino oscillation, all neutrino species appear when they arrive at the Earth, and can be detected by a 50,000 metric ton water Cherenkov detector, Super-Kamiokande (SK). A search for low energy neutrinos in the electron total energy range from 19 to 55 MeV was carried out with SK and gives a monopole flux limit of F_M(sigma_0/1 mb) < 6.3 times 10^{-24} (beta_M/10^{-3})^2 cm^{-2} s^{-1} sr^{-1} at 90% C.L., where beta_M is the monopole velocity in units of the speed of light and sigma_0 is the catalysis cross section at beta_M=1. The obtained limit is more than eight orders of magnitude more stringent than the current best cosmic-ray supermassive monopole flux limit, F_M < 1 times 10^{-15} cm^{-2} s^{-1} sr^{-1} for beta_M < 10^{-3} and also two orders of magnitude lower than the result of the Kamiokande experiment, which used a similar detection method.
The hidden sector photon is a weakly interacting hypothetical particle with sub-eV mass that kinetically mixes with the photon. We describe a microwave frequency light shining through a wall experiment where a cryogenic resonant microwave cavity is u sed to try and detect photons that have passed through an impenetrable barrier, a process only possible via mixing with hidden sector photons. For a hidden sector photon mass of 53 $mu$eV we limit the hidden photon kinetic mixing parameter $chi < 1.7times10^{-7}$, which is an order of magnitude lower than previous bounds derived from cavity experiments in the same mass range. In addition, we use the cryogenic detector cavity to place new limits on the kinetic mixing parameter for hidden sector photons as a form of cold dark matter.
69 - M. Arik , S. Aune , K. Barth 2011
The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using 3He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with 4He. Wit h about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV < m_a < 0.64 eV. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 2.3 x 10^{-10} GeV^{-1} at 95% CL, the exact value depending on the pressure setting. KSVZ axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In future we will extend our search to m_a < 1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا