ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond the Iron Peak: r- and s-process Elemental Abundances in Stars with Planets

46   0   0.0 ( 0 )
 نشر من قبل Jade Bond
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present elemental abundances of 118 stars (28 of which are known extrasolar planetary host stars) observed as part of the Anglo-Australian Planet Search. Abundances of O, Mg, Cr, Y, Zr, Ba, Nd and Eu (along with previously published abundances for C and Si) are presented. This study is one of the first to specifically examine planetary host stars for the heavy elements produced by neutron capture reactions. We find that the host stars are chemically different to both the standard solar abundance and non-host stars in all elements studied, with enrichments over non-host stars ranging from 0.06 dex (for O) to 0.11 dex (for Cr and Y). Such abundance trends are in agreement with other previous studies of field stars and lead us to conclude that the chemical anomalies observed in planetary host stars are the result of normal galactic chemical evolution processes. Based on this observation, we conclude that the observed chemical traits of planetary host stars are primordial in origin, coming from the original nebula and not from a ``pollution process occurring during or after formation and that planet formation occurs naturally with the evolution of stellar material.

قيم البحث

اقرأ أيضاً

67 - K. Werner , T. Rauch , E. Reiff 2007
The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. T hus, the photospheric elemental abundances of these stars allow to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted elemental abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. PG1159 stars appear to be the direct progeny of [WC] stars.
We have obtained new detailed abundances of the Fe-group elements Sc through Zn (Z=21-30) in three very metal-poor ([Fe/H] $approx -3$) stars: BD 03 740, BD -13 3442 and CD -33 1173. High-resolution ultraviolet HST/STIS spectra in the wavelength rang e 2300-3050AA were gathered, and complemented by an assortment of optical echelle spectra. The analysis featured recent laboratory atomic data for number of neutral and ionized species for all Fe-group elements except Cu and Zn. A detailed examination of scandium, titanium, and vanadium abundances in large-sample spectroscopic surveys indicates that they are positively correlated in stars with [Fe/H]<-$2. The abundances of these elements in BD 03 740, BD -13 3442 and CD -33 1173 and HD 84937. (studied in a previous paper of this series) are in accord with these trends and lie at the high end of the correlations. Six elements have detectable neutral and ionized features, and generally their abundances are in reasonable agreement. For Cr we find only minimal abundance disagreement between the neutral (mean of [Cri/Fe]=+0.01) and ionized species (mean of [Crii/Fe]=+0.08), unlike most studies in the past. The prominent exception is Co, for which the neutral species indicates a significant overabundance (mean of [Co/H]=-2.53), while no such enhancement is seen for the ionized species (mean of [Coii/H]=-2.93). These new stellar abundances, especially the correlations among Sc, Ti, and V, suggest that models of element production in early high-mass metal-poor stars should be revisited.
We present $gtrsim 15,000$ metal-rich (${rm [Fe/H]}>-0.2$dex) A and F stars whose surface abundances deviate strongly from Solar abundance ratios and cannot plausibly reflect their birth material composition. These stars are identified by their high [Ba/Fe] abundance ratios (${rm [Ba/Fe]}>1.0$dex) in the LAMOST DR5 spectra analyzed by Xiang et al. (2019). They are almost exclusively main sequence and subgiant stars with $T_{rm eff}gtrsim6300$K. Their distribution in the Kiel diagram ($T_{rm eff}$--$log g$) traces a sharp border at low temperatures along a roughly fixed-mass trajectory (around $1.4M_odot)$ that corresponds to an upper limit in convective envelope mass fraction of around $10^{-4}$. Most of these stars exhibit distinctly enhanced abundances of iron-peak elements (Cr, Mn, Fe, Ni) but depleted abundances of Mg and Ca. Rotational velocity measurements from GALAH DR2 show that the majority of these stars rotate slower than typical stars in an equivalent temperature range. These characteristics suggest that they are related to the so-called Am/Fm stars. Their abundance patterns are qualitatively consistent with the predictions of stellar evolution models that incorporate radiative acceleration, suggesting they are a consequence of stellar internal evolution particularly involving the competition between gravitational settling and radiative acceleration. These peculiar stars constitute 40% of the whole population of stars with mass above 1.5$M_odot$, affirming that peculiar photospheric abundances due to stellar evolution effects are a ubiquitous phenomenon for these intermediate-mass stars. This large sample of Ba-enhanced chemically peculiar A/F stars with individual element abundances provides the statistics to test more stringently the mechanisms that alter the surface abundances in stars with radiative envelopes.
We present [Fe/H] and [$alpha$/Fe] abundances, derived using spectral synthesis techniques, for stars in M31s outer stellar halo. The 21 [Fe/H] measurements and 7 [$alpha$/Fe] measurements are drawn from fields ranging from 43 to 165 kpc in projected distance from M31. We combine our measurements with existing literature measurements, and compare the resulting sample of 23 stars with [Fe/H] and 9 stars with [$alpha$/Fe] measurements in M31s outer halo with [$alpha$/Fe] and [Fe/H] measurements, also derived from spectral synthesis, in M31s inner stellar halo ($r < $26 kpc) and dSph galaxies. The stars in M31s outer halo have [$alpha$/Fe] patterns that are consistent with the largest of M31s dSph satellites (And I and And VII). These abundances provide tentative evidence that the [$alpha$/Fe] abundances of stars in M31s outer halo are more similar to the abundances of Milky Way halo stars than to the abundances of stars in M31s inner halo. We also compare the spectral synthesis-based [Fe/H] measurements of stars in M31s halo with previous photometric [Fe/H] estimates, as a function of projected distance from M31. The spectral synthesis-based [Fe/H] measurements are consistent with a large-scale metallicity gradient previously observed in M31s stellar halo to projected distances as large as 100 kpc.
In order to get a broader view of the s-process nucleosynthesis we study the abundance distribution of heavy elements of 35 barium stars and 24 CEMP-stars, including nine CEMP-s stars and 15 CEMP-r/s stars. The similar distribution of [Pb/hs] between CEMP-s and CEMP-r/s stars indicate that the s-process material of both CEMP-s and CEMP-r/s stars should have a uniform origin, i.e. mass transfer from their predominant AGB companions. For the CEMP-r/s stars, we found that the r-process should provide similar proportional contributes to the second s-peak and the third s-peak elements, and also be responsible for the higher overabundance of heavy elements than those in CEMP-s stars. Which hints that the r-process origin of CEMP-r/s stars should be closely linked to the main r-process. The fact that some small $r$ values exist for both barium and CEMP-s stars, implies that the single exposure event of the s-process nucleosynthesis should be general in a wide metallicity range of our Galaxy. Based on the relation between $C_{r}$ and $C_{s}$, we suggest that the origin of r-elements for CEMP-r/s stars have more sources. A common scenario is that the formation of the binary system was triggered by only one or a few supernova. In addition, accretion-induced collapse(AIC) or SN 1.5 should be the supplementary scenario, especially for these whose pre-AGB companion with higher mass and smaller orbit radius, which support the higher values of both $C_{r}$ and $C_{s}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا