ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of superstrong, fading, iron line emission and double-peaked Balmer lines of the galaxy SDSSJ0952+2143 - the light echo of a huge flare

38   0   0.0 ( 0 )
 نشر من قبل Stefanie Komossa
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of superstrong, fading, high-ionization iron line emission in the galaxy SDSSJ095209.56+214313.3 (SDSSJ0952+2143 hereafter), which must have been caused by an X-ray outburst of large amplitude. SDSSJ0952+2143 is unique in its strong multiwavelength variability; such a broadband emission-line and continuum response has not been observed before. The strong iron line emission is accompanied by unusual Balmer line emission with a broad base, narrow core and double-peaked narrow horns, and strong HeII emission. These lines, while strong in the SDSS spectrum taken in 2005, have faded away significantly in new spectra taken in December 2007. Comparison of SDSS, 2MASS, GALEX and follow-up GROND photometry reveals variability in the NUV, optical and NIR band. Taken together, these unusual observations can be explained by a giant outburst in the EUV--X-ray band, detected even in the optical and NIR. The intense and variable iron, Helium and Balmer lines represent the ``light echo of the flare, as it traveled through circumnuclear material. The outburst may have been caused by the tidal disruption of a star by a supermassive black hole. Spectroscopic surveys such as SDSS are well suited to detect emission-line light echoes of such rare flare events. Reverberation-mapping of these light echoes can then be used as a new and efficient probe of the physical conditions in the circumnuclear material in non-active or active galaxies.

قيم البحث

اقرأ أيضاً

132 - I. Strateva 2006
We summarize the optical, UV, and X-ray properties of double-peaked emitters -- AGN with double-peaked Balmer emission lines believed to originate in the AGN accretion disk. We focus on the X-ray spectroscopic results obtained from a new sample of th e 16 broadest Balmer line AGN observed with Chandra and Swift.
We present results from spectroscopic observations of AT 2018hyz, a transient discovered by the ASAS-SN survey at an absolute magnitude of $M_Vsim -20.2$ mag, in the nucleus of a quiescent galaxy with strong Balmer absorption lines. AT 2018hyz shows a blue spectral continuum and broad emission lines, consistent with previous TDE candidates. High cadence follow-up spectra show broad Balmer lines and He I in early spectra, with He II making an appearance after $sim70-100$ days. The Balmer lines evolve from a smooth broad profile, through a boxy, asymmetric double-peaked phase consistent with accretion disc emission, and back to smooth at late times. The Balmer lines are unlike typical AGN in that they show a flat Balmer decrement (H$alpha$/H$betasim1.5$), suggesting the lines are collisionally excited rather than being produced via photo-ionisation. The flat Balmer decrement together with the complex profiles suggest that the emission lines originate in a disc chromosphere, analogous to those seen in cataclysmic variables. The low optical depth of material due to a possible partial disruption may be what allows us to observe these double-peaked, collisionally excited lines. The late appearance of He II may be due to an expanding photosphere or outflow, or late-time shocks in debris collisions.
We study the 0.5-10keV emission of a sample of five of the broadest double-peaked Balmer-line emitters with Chandra. The Balmer lines of these objects originate close (within a few hundred gravitational radii) to the central black holes of the Active Galactic Nuclei (AGNs), and their double-peaked profiles suggest an origin in the AGN accretion disk. We find that four of the five targets can be modeled by simple power-law continua with photon indices (1.6-1.8) typical of similar luminosity AGNs. One object, SDSS J0132-0952, shows evidence of ionized intrinsic absorption. The most-luminous SDSS double-peaked emitter, SDSS J2125-0813, has either an unusual flat spectrum (~1) or is also highly absorbed. It is the only double-peaked emitter for which no external illumination is necessary to account for the Balmer line emission. The strength of the Balmer-line emission in the remaining four objects suggests that the total line flux likely exceeds the viscous energy that can be extracted locally from the accretion disk and external illumination is necessary. All five double-peaked emitters have unusually strong X-ray emission relative to their UV/optical emission, which is the likely source of the external illumination necessary for the production of the observed strong broad lines. On average about 30% of their bolometric luminosities are emitted between 0.5-10keV. The spectral energy distributions of the five double-peaked emitters show the big blue bumps characteristic of radiatively efficient accretion flows. The Balmer line profiles, as well as the optical and X-ray fluxes of the double-peaked emitters, are highly variable on timescales of months to years in the AGN rest frame.
131 - I. V. Strateva 2006
Double-peaked Balmer-line profiles originate in the accretion disks of a few percent of optically selected AGN. The reasons behind the strong low-ionization line emission from the accretion disks of these objects is still uncertain. In this paper, we characterize the X-ray properties of 39 double-peaked Balmer line AGN, 29 from the Sloan Digital Sky Survey and 10 low optical-luminosity double-peaked emitters from earlier radio-selected samples. We find that the UV-to-X-ray slope of radio-quiet (RQ) double-peaked emitters as a class does not differ substantially from that of normal RQ AGN with similar UV monochromatic luminosity. The radio-loud (RL) double-peaked emitters, with the exception of LINER galaxies, are more luminous in the X-rays than RQ AGN, as has been observed for other RL AGN with single-peaked profiles. The X-ray spectral shapes of double-peaked emitters, measured by their hardness ratios or power-law photon indices, are also largely consistent with those of normal AGN of similar radio-loudness. In practically all cases studied here, external illumination of the accretion disk is necessary to produce the Balmer-line emission, as the gravitational energy released locally in the disk by viscous stresses is insufficient to produce lines of the observed strength. In the Appendix we study the variability of Mrk 926, a double-peaked emitter with several observations in the optical and X-ray bands.
97 - T. An , Z. Paragi , S. Frey 2013
The galaxy 3C,316 is the brightest in the radio band among the optically-selected candidates exhibiting double-peaked narrow optical emission lines. Observations with the Very Large Array (VLA), Multi-Element Remotely Linked Interferometer Network (e -MERLIN), and the European VLBI Network (EVN) at 5,GHz have been used to study the radio structure of the source in order to determine the nature of the nuclear components and to determine the presence of radio cores. The e-MERLIN image of 3C 316 reveals a collimated coherent east-west emission structure with a total extent of about 3 kpc. The EVN image shows seven discrete compact knots on an S-shaped line. However, none of these knots could be unambiguously identified as an AGN core. The observations suggest that the majority of the radio structure belongs to a powerful radio AGN, whose physical size and radio spectrum classify it as a compact steep-spectrum source. Given the complex radio structure with radio blobs and knots, the possibility of a kpc-separation dual AGN cannot be excluded if the secondary is either a naked core or radio quiet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا