ترغب بنشر مسار تعليمي؟ اضغط هنا

On the asymptotic measure of periodic subsystems of finite type in symbolic dynamics

92   0   0.0 ( 0 )
 نشر من قبل Chazottes
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $DeltasubsetneqV$ be a proper subset of the vertices $V$ of the defining graph of an aperiodic shift of finite type $(Sigma_{A}^{+},S)$. Let $Delta_{n}$ be the union of cylinders in $Sigma_{A}^{+}$ corresponding to the points $x$ for which the first $n$-symbols of $x$ belong to $Delta$ and let $mu$ be an equilibrium state of a Holder potential $phi$ on $Sigma_{A}^{+}$. We know that $mu(Delta_{n})$ converges to zero as $n$ diverges. We study the asymptotic behaviour of $mu(Delta_{n})$ and compare it with the pressure of the restriction of $phi$ to $Sigma_{Delta}$. The present paper extends some results in cite{CCC} to the case when $Sigma_{Delta}$ is irreducible and periodic. We show an explicit example where the asymptotic behaviour differs from the aperiodic case.



قيم البحث

اقرأ أيضاً

Let $DeltasubsetneqV$ be a proper subset of the vertices $V$ of the defining graph of an irreducible and aperiodic shift of finite type $(Sigma_{A}^{+},S)$. Let $Sigma_{Delta}$ be the subshift of allowable paths in the graph of $Sigma_{A}^{+}$ which only passes through the vertices of $Delta$. For a random point $x$ chosen with respect to an equilibrium state $mu$ of a Holder potential $phi$ on $Sigma_{A}^{+}$, let $tau_{n}$ be the point process defined as the sum of Dirac point masses at the times $k>0$, suitably rescaled, for which the first $n$-symbols of $S^k x$ belong to $Delta$. We prove that this point process converges in law to a marked Poisson point process of constant parameter measure. The scale is related to the pressure of the restriction of $phi$ to $Sigma_{Delta}$ and the parameters of the limit law are explicitly computed.
We investigate Takagi-type functions with roughness parameter $gamma$ that are Holder continuous with coefficient $H=frac{loggamma}{log eh}.$ Analytical access is provided by an embedding into a dynamical system related to the baker transform where t he graphs of the functions are identified as their global attractors. They possess stable manifolds hosting Sinai-Bowen-Ruelle (SBR) measures. We show that the SBR measure is absolutely continuous for large enough $gamma$. Dually, where duality is related to time reversal, we prove that for large enough $gamma$ a version of the Takagi-type curve centered around fibers of the associated stable manifold possesses a square integrable local time.
80 - Pierre Gabriel , MAMBA 2019
We prove, in the framework of measure solutions, that the equal mito-sis equation present persistent asymptotic oscillations. To do so we adopt a duality approach, which is also well suited for proving the well-posedness when the division rate is unb ounded. The main difficulty for characterizing the asymptotic behavior is to define the projection onto the subspace of periodic (rescaled) solutions. We achieve this by using the generalized relative entropy structure of the dual problem.
In this survey we will present the symbolic extension theory in topological dynamics, which was built over the past twenty years.
The structure of the set of local dimensions of a self-similar measure has been studied by numerous mathematicians, initially for measures that satisfy the open set condition and, more recently, for measures on $mathbb{R}$ that are of finite type. In this paper, our focus is on finite type measures defined on the torus, the quotient space $mathbb{R}backslash mathbb{Z}$. We give criteria which ensures that the set of local dimensions of the measure taken over points in special classes generates an interval. We construct a non-trivial example of a measure on the torus that admits an isolated point in its set of local dimensions. We prove that the set of local dimensions for a finite type measure that is the quotient of a self-similar measure satisfying the strict separation condition is an interval. We show that sufficiently many convolutions of Cantor-like measures on the torus never admit an isolated point in their set of local dimensions, in stark contrast to such measures on $mathbb{R}$. Further, we give a family of Cantor-like measures on the torus where the set of local dimensions is a strict subset of the set of local dimensions, excluding the isolated point, of the corresponding measures on $mathbb{R}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا