ﻻ يوجد ملخص باللغة العربية
The semi-relativistic quark potential model is surprisingly powerful for heavy-light systems if the bound state equation is treated correctly using 1/m_Q expansion with heavy quark mass m_Q. We elucidate the reasons why our semi-relativistic model succeeds in predicting and reproducing all the mass spectra of heavy-light systems so far reported, D/D_s/B/B_s, by reviewing and comparing recent experimental data with the results of our model and others. Especially the mass spectra of the so-called D_{sJ}, i.e., D_{s0}^* and D_{s1}, are successfully reproduced only by our model but not by other models.
Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates and asymmetry parameters.
Exclusive nonleptonic decays of bottom and charm baryons are studied within a relativistic quark model. We include factorizing as well as nonfactorizing contributions to the decay amplitudes.
We present a path-integral hadronization for doubly heavy baryons. The two heavy quarks in the baryon are approximated as a scalar or axial-vector diquark described by a heavy diquark effective theory. The gluon dynamics are represented by a NJL-Mode
Recent data on the production of $D$ mesons and $Lambda_c^+$ baryons in heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider exhibit a number of striking characteristics such as enhanced yield ratios $D_s^+/D^0$,
The study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary va