ﻻ يوجد ملخص باللغة العربية
We report on a new optical implementation of primary gas thermometry based on laser absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) $ u_{1} + 2 u_{2}^{phantom{1}0} + u_{3}$ transition in CO$_{2}$ gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of $sim1.6times10^{-4}$.
In this paper, we present the latest results on the measurement of the Boltzmann constant kB, by laser spectroscopy of ammonia at 10 ?m. The Doppler absorption profile of a ro-vibrational line of an NH3 gas sample at thermal and pressure equilibrium
In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This o
Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 $mu$m enables a determinati
We report the experimental realization of a non-galvanic, primary thermometer capable of measuring the electron temperature of a two-dimensional electron gas with negligible thermal load. Such a thermometer consists of a quantum dot whose temperature
A nonlinear transformation approach is formulated for the correlated fermions thermodynamics through a medium-scaling effective action. An auxiliary implicit variable-effective chemical potential is introduced to characterize the non-Gaussian fluctua