ترغب بنشر مسار تعليمي؟ اضغط هنا

Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the Boltzmann constant

195   0   0.0 ( 0 )
 نشر من قبل Livio Gianfrani
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a new optical implementation of primary gas thermometry based on laser absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) $ u_{1} + 2 u_{2}^{phantom{1}0} + u_{3}$ transition in CO$_{2}$ gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of $sim1.6times10^{-4}$.



قيم البحث

اقرأ أيضاً

125 - Cyril Lemarchand 2009
In this paper, we present the latest results on the measurement of the Boltzmann constant kB, by laser spectroscopy of ammonia at 10 ?m. The Doppler absorption profile of a ro-vibrational line of an NH3 gas sample at thermal and pressure equilibrium is measured as accurately as possible. The absorption cell is placed inside a large 1m3 thermostat filled with an ice-water mixture, which sets the temperature very close to 273.15 K. Analysing this profile, which is related to the Maxwell-Boltzmann molecular speed distribution, leads to a determination of the Boltzmann constant via a measurement of the Doppler width (proportional tosqrt(kBT)). A spectroscopic determination of the Boltzmann constant with an uncertainty as low as 37 ppm is obtained. Recent improvements with a new passive thermostat lead to a temperature accuracy, stability and homogeneity of the absorption cell better than 1 ppm over a day.
182 - Cyril Lemarchand 2010
In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This o ptical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.
124 - Beno^it Darquie 2015
Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 $mu$m enables a determinati on of the Boltzmann constant k B. We report on our latest measurements. By fitting this lineshape to several models which include Dicke narrowing or speed-dependent collisional effects, we find that a determination of k B with an uncertainty of a few ppm is reachable. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of k B determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the kelvin by fixing k B, an exciting prospect considering the upcoming redefinition of the International System of Units.
We report the experimental realization of a non-galvanic, primary thermometer capable of measuring the electron temperature of a two-dimensional electron gas with negligible thermal load. Such a thermometer consists of a quantum dot whose temperature -dependent, single-electron transitions are detected by means of a quantum-point-contact electrometer. Its operating principle is demonstrated for a wide range of electron temperatures from 40 to 800 mK. This noninvasive thermometry can find application in experiments addressing the thermal properties of micrometer-scale mesoscopic electron systems, where heating or cooling electrons requires relatively low thermal budgets.
437 - Ji-sheng Chen 2009
A nonlinear transformation approach is formulated for the correlated fermions thermodynamics through a medium-scaling effective action. An auxiliary implicit variable-effective chemical potential is introduced to characterize the non-Gaussian fluctua tions physics. By incorporating the nonlocal correlation effects, the achieved grand partition function is made of coupled highly nonlinear parametric equations. Analytically, the low temperature expansions for the strongly interacting unitary Fermi gas are performed for the adiabatic compressibility-sound speed and specific heat with the Sommerfeld lemma. The expressions for the Landau Fermi-Liquid parameters $F_0^s$ and $F_1^s$ of the strongly interacting fermion system are obtained. As a universal constant, the effective fermion mass ratio is $m^*/m={10/9}$ at unitarity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا