ترغب بنشر مسار تعليمي؟ اضغط هنا

Information Acquisition and Exploitation in Multichannel Wireless Networks

237   0   0.0 ( 0 )
 نشر من قبل Sudipto Guha
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A wireless system with multiple channels is considered, where each channel has several transmission states. A user learns about the instantaneous state of an available channel by transmitting a control packet in it. Since probing all channels consumes significant energy and time, a user needs to determine what and how much information it needs to acquire about the instantaneous states of the available channels so that it can maximize its transmission rate. This motivates the study of the trade-off between the cost of information acquisition and its value towards improving the transmission rate. A simple model is presented for studying this information acquisition and exploitation trade-off when the channels are multi-state, with different distributions and information acquisition costs. The objective is to maximize a utility function which depends on both the cost and value of information. Solution techniques are presented for computing near-optimal policies with succinct representation in polynomial time. These policies provably achieve at least a fixed constant factor of the optimal utility on any problem instance, and in addition, have natural characterizations. The techniques are based on exploiting the structure of the optimal policy, and use of Lagrangean relaxations which simplify the space of approximately optimal solutions.

قيم البحث

اقرأ أيضاً

In this paper, we first remodel the line coverage as a 1D discrete problem with co-linear targets. Then, an order-based greedy algorithm, called OGA, is proposed to solve the problem optimally. It will be shown that the existing order in the 1D model ing, and especially the resulted Markov property of the selected sensors can help design greedy algorithms such as OGA. These algorithms demonstrate optimal/efficient performance and have lower complexity compared to the state-of-the-art. Furthermore, it is demonstrated that the conventional continuous line coverage problem can be converted to an equivalent discrete problem and solved optimally by OGA. Next, we formulate the well-known weak barrier coverage problem as an instance of the continuous line coverage problem (i.e. a 1D problem) as opposed to the conventional 2D graph-based models. We demonstrate that the equivalent discrete version of this problem can be solved optimally and faster than the state-of-the-art methods using an extended version of OGA, called K-OGA. Moreover, an efficient local algorithm, called LOGM, is proposed to mend barrier gaps due to sensor failure. In the case of m gaps, LOGM is proved to select at most 2m-1 sensors more than the optimal while being local and implementable in distributed fashion. We demonstrate the optimal/efficient performance of the proposed algorithms via extensive simulations.
The 5G Phase-2 and beyond wireless systems will focus more on vertical applications such as autonomous driving and industrial Internet-of-things, many of which are categorized as ultra-Reliable Low-Latency Communications (uRLLC). In this article, an alternative view on uRLLC is presented, that information latency, which measures the distortion of information resulted from time lag of its acquisition process, is more relevant than conventional communication latency of uRLLC in wireless networked control systems. An AI-assisted Situationally-aware Multi-Agent Reinforcement learning framework for wireless neTworks (SMART) is presented to address the information latency optimization challenge. Case studies of typical applications in Autonomous Driving (AD) are demonstrated, i.e., dense platooning and intersection management, which show that SMART can effectively optimize information latency, and more importantly, information latency-optimized systems outperform conventional uRLLC-oriented systems significantly in terms of AD performance such as traffic efficiency, thus pointing out a new research and system design paradigm.
New optical technologies offer the ability to reconfigure network topologies dynamically, rather than setting them once and for all. This is true in both optical wide area networks (optical WANs) and in datacenters, despite the many differences betwe en these two settings. Because of these new technologies, there has been a surge of both practical and theoretical research on algorithms to take advantage of them. In particular, Jia et al. [INFOCOM 17] designed online scheduling algorithms for dynamically reconfigurable topologies for both the makespan and sum of completion times objectives. In this paper, we work in the same setting but study an objective that is more meaningful in an online setting: the sum of flow times. The flow time of a job is the total amount of time that it spends in the system, which may be considerably smaller than its completion time if it is released late. We provide competitive algorithms for the online setting with speed augmentation, and also give a lower bound proving that speed augmentation is in fact necessary. As a side effect of our techniques, we also improve and generalize the results of Jia et al. on completion times by giving an $O(1)$-competitive algorithm for arbitrary sizes and release times even when nodes have different degree bounds, and moreover allow for the weighted sum of completion times (or flow times).
To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا