ﻻ يوجد ملخص باللغة العربية
A wireless system with multiple channels is considered, where each channel has several transmission states. A user learns about the instantaneous state of an available channel by transmitting a control packet in it. Since probing all channels consumes significant energy and time, a user needs to determine what and how much information it needs to acquire about the instantaneous states of the available channels so that it can maximize its transmission rate. This motivates the study of the trade-off between the cost of information acquisition and its value towards improving the transmission rate. A simple model is presented for studying this information acquisition and exploitation trade-off when the channels are multi-state, with different distributions and information acquisition costs. The objective is to maximize a utility function which depends on both the cost and value of information. Solution techniques are presented for computing near-optimal policies with succinct representation in polynomial time. These policies provably achieve at least a fixed constant factor of the optimal utility on any problem instance, and in addition, have natural characterizations. The techniques are based on exploiting the structure of the optimal policy, and use of Lagrangean relaxations which simplify the space of approximately optimal solutions.
In this paper, we first remodel the line coverage as a 1D discrete problem with co-linear targets. Then, an order-based greedy algorithm, called OGA, is proposed to solve the problem optimally. It will be shown that the existing order in the 1D model
The 5G Phase-2 and beyond wireless systems will focus more on vertical applications such as autonomous driving and industrial Internet-of-things, many of which are categorized as ultra-Reliable Low-Latency Communications (uRLLC). In this article, an
New optical technologies offer the ability to reconfigure network topologies dynamically, rather than setting them once and for all. This is true in both optical wide area networks (optical WANs) and in datacenters, despite the many differences betwe
To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3)
This paper summarizes recent contributions of the authors and their co-workers in the area of information-theoretic security.