ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Observation of Dark Excitons in Individual Carbon Nanotubes: Role of Local Environments

218   0   0.0 ( 0 )
 نشر من قبل Junichiro Kono
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the direct observation of the spin-singlet dark excitonic state in individual single-walled carbon nanotubes through low-temperature micro-photoluminescence spectroscopy in magnetic fields. A magnetic field up to 5 T, applied along the nanotube axis, brightened the dark state, leading to the emergence of a new emission peak. The peak rapidly grew in intensity with increasing field at the expense of the originally-dominant bright exciton peak and finally became dominant at fields $>$3 T. This behavior, universally observed for more than 50 nanotubes of different chiralities, can be quantitatively explained through a model incorporating the Aharonov-Bohm effect and intervalley Coulomb mixing, unambiguously proving the existence of dark excitons. The directly measured dark-bright splitting values were 1-4 meV for tube diameters 1.0-1.3 nm. Scatter in the splitting value emphasizes the role of the local environment surrounding a nanotube in determining the excitonic fine structure of single-walled carbon nanotubes.



قيم البحث

اقرأ أيضاً

We report a measurement on quantum capacitance of individual semiconducting and small band gap SWNTs. The observed quantum capacitance is remarkably smaller than that originating from density of states and it implies a strong electron correlation in SWNTs.
Optical properties of single-wall carbon nanotubes (SWCNTs) for light polarized parallel to the nanotube axis have been extensively studied, whereas their response to light polarized perpendicular to the nanotube axis has not been well explored. Here , by using a macroscopic film of highly aligned single-chirality (6,5) SWCNTs, we performed a systematic polarization-dependent optical absorption spectroscopy study. In addition to the commonly observed angular-momentum-conserving interband absorption of parallel-polarized light, which generates $E_{11}$ and $E_{22}$ excitons, we observed a small but unambiguous absorption peak whose intensity is maximum for perpendicular-polarized light. We attribute this feature to the lowest-energy cross-polarized interband absorption processes that change the angular momentum along the nanotube axis by $pm 1$, generating $E_{12}$ and $E_{21}$ excitons. The energy difference between the $E_{12}$ and $E_{21}$ exciton peaks, expected from asymmetry between the conduction and valence bands, was smaller than the observed linewidth. Unlike previous observations of cross-polarized excitons in polarization-dependent photoluminescence and circular dichroism spectroscopy experiments, our direct observation using absorption spectroscopy allowed us to quantitatively analyze this resonance. Specifically, we determined the energy and oscillator strength of this resonance to be 1.54 and 0.05, respectively, compared with the values for the $E_{11}$ exciton peak. These values, in combination with comparison with theoretical calculations, in turn led to an assessment of the environmental effect on the strength of Coulomb interactions in this aligned single-chirality SWCNT film.
We show that new low-energy photoluminescence (PL) bands can be created in semiconducting single-walled carbon nanotubes by intense pulsed excitation. The new bands are attributed to PL from different nominally dark excitons that are brightened due t o defect-induced mixing of states with different parity and/or spin. Time-resolved PL studies on single nanotubes reveal a significant reduction of the bright exciton lifetime upon brightening of the dark excitons. The lowest energy dark state has longer lifetimes and is not in thermal equilibrium with the bright state.
Ultrafast terahertz spectroscopy accesses the {em dark} excitonic ground state in resonantly-excited (6,5) SWNTs via internal, direct dipole-allowed transitions between lowest lying dark-bright pair state $sim$6 meV. An analytical model reproduces th e response which enables quantitative analysis of transient densities of dark excitons and {em e-h} plasma, oscillator strength, transition energy renormalization and dynamics. %excitation-induced renormalization. Non-equilibrium, yet stable, quasi-1D quantum states with dark excitonic correlations rapidly emerge even with increasing off-resonance photoexcitation and experience a unique crossover to complex phase-space filling of %a complex distribution between both dark and bright pair states, different from dense 2D/3D excitons influenced by the thermalization, cooling and ionization to free carriers.
We examine the excitonic nature of high-lying optical transitions in single-walled carbon nanotubes by means of Rayleigh scattering spectroscopy. A careful analysis of the principal transitions of individual semiconducting and metallic nanotubes reve als that in both cases the lineshape is consistent with an excitonic model, but not one of free-carriers. For semiconducting species, side-bands are observed at ~200 meV above the third and fourth optical transitions. These features are ascribed to exciton-phonon bound states. Such side-bands are not apparent for metallic nanotubes,as expected from the reduced strength of excitonic interactions in these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا