ﻻ يوجد ملخص باللغة العربية
We study the asymptotic properties of bridge estimators in sparse, high-dimensional, linear regression models when the number of covariates may increase to infinity with the sample size. We are particularly interested in the use of bridge estimators to distinguish between covariates whose coefficients are zero and covariates whose coefficients are nonzero. We show that under appropriate conditions, bridge estimators correctly select covariates with nonzero coefficients with probability converging to one and that the estimators of nonzero coefficients have the same asymptotic distribution that they would have if the zero coefficients were known in advance. Thus, bridge estimators have an oracle property in the sense of Fan and Li [J. Amer. Statist. Assoc. 96 (2001) 1348--1360] and Fan and Peng [Ann. Statist. 32 (2004) 928--961]. In general, the oracle property holds only if the number of covariates is smaller than the sample size. However, under a partial orthogonality condition in which the covariates of the zero coefficients are uncorrelated or weakly correlated with the covariates of nonzero coefficients, we show that marginal bridge estimators can correctly distinguish between covariates with nonzero and zero coefficients with probability converging to one even when the number of covariates is greater than the sample size.
Models with multiple change points are used in many fields; however, the theoretical properties of maximum likelihood estimators of such models have received relatively little attention. The goal of this paper is to establish the asymptotic propertie
Neural networks are one of the most popularly used methods in machine learning and artificial intelligence nowadays. Due to the universal approximation theorem (Hornik et al. (1989)), a neural network with one hidden layer can approximate any continu
In this paper we discuss the estimation of a nonparametric component $f_1$ of a nonparametric additive model $Y=f_1(X_1) + ...+ f_q(X_q) + epsilon$. We allow the number $q$ of additive components to grow to infinity and we make sparsity assumptions a
We study the asymptotic properties of the SCAD-penalized least squares estimator in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We are particularly interested in the use of this
We derive asymptotic normality of kernel type deconvolution estimators of the density, the distribution function at a fixed point, and of the probability of an interval. We consider the so called super smooth case where the characteristic function of