ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of ram-pressure stripping on the internal kinematics of simulated spiral galaxies

88   0   0.0 ( 0 )
 نشر من قبل Thomas Kronberger
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Kronberger




اسأل ChatGPT حول البحث

We investigate the influence of ram-pressure stripping on the internal gas kinematics of simulated spiral galaxies. Additional emphasis is put on the question of how the resulting distortions of the gaseous disc are visible in the rotation curve and/or the full 2D velocity field of galaxies at different redshifts. A Milky-Way type disc galaxy is modelled in combined N-body/hydrodynamic simulations with prescriptions for cooling, star formation, stellar feedback, and galactic winds. This model galaxy moves through a constant density and temperature gas, which has parameters similar to the intra-cluster medium (ICM). Rotation curves (RCs) and 2D velocity fields of the gas are extracted from these simulations in a way that follows the procedure applied to observations of distant, small, and faint galaxies as closely as possible. We find that the appearance of distortions of the gaseous disc due to ram-pressure stripping depends on the direction of the acting ram pressure. In the case of face-on ram pressure, the distortions mainly appear in the outer parts of the galaxy in a very symmetric way. In contrast, in the case of edge-on ram pressure we find stronger distortions. The 2D velocity field also shows signatures of the interaction in the inner part of the disc. At angles smaller than 45 degrees between the ICM wind direction and the disc, the velocity field asymmetry increases significantly compared to larger angles. Compared to distortions caused by tidal interactions, the effects of ram-pressure stripping on the velocity field are relatively low in all cases and difficult to observe at intermediate redshift in seeing-limited observations. (abridged)



قيم البحث

اقرأ أيضاً

We investigate the influence of ram-pressure stripping on the star formation and the mass distribution in simulated spiral galaxies. Special emphasis is put on the question where the newly formed stars are located. The stripping radius from the simul ation is compared to analytical estimates. Disc galaxies are modelled in combined N-body/hydrodynamic simulations (GADGET-2) with prescriptions for cooling, star formation, stellar feedback, and galactic winds. These model galaxies move through a constant density and temperature gas, which has parameters comparable to the intra-cluster medium (ICM) in the outskirts of a galaxy cluster (T=3 keV ~3.6x10^7 K and rho=10^-28 g/cm^3). With this numerical setup we analyse the influence of ram-pressure stripping on the star formation rate of the model galaxy. We find that the star formation rate is significantly enhanced by the ram-pressure effect (up to a factor of 3). Stars form in the compressed central region of the galaxy as well as in the stripped gas behind the galaxy. Newly formed stars can be found up to hundred kpc behind the disc, forming structures with sizes of roughly 1 kpc in diameter and with masses of up to 10^7 M_sun. As they do not possess a dark matter halo due to their formation history, we name them stripped baryonic dwarf galaxies. We also find that the analytical estimate for the stripping radius from a Gunn & Gott (1972) criterion is in good agreement with the numerical value from the simulation. Like in former investigations, edge-on systems lose less gas than face-on systems and the resulting spatial distribution of the gas and the newly formed stars is different.
106 - Mario G. Abadi 1999
We use 3-dimensional SPH/N-BODY simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott (1972) relating the gravitational restoring force provided by the disk to the ram pressure force, provides a good approximation to the radius that gas will be stripped from a galaxy. However, at small radii it is also important to consider the potential provided by the bulge component. A spiral galaxy passing through the core of a rich cluster such as Coma, will have its gaseous disk truncated to $sim 4$ kpc, thus losing $sim 80%$ of its diffuse gas mass. The timescale for this to occur is a fraction of a crossing time $sim 10^7$ years. Galaxies orbiting within poorer clusters, or inclined to the direction of motion through the intra-cluster medium will lose significantly less gas. We conclude that ram-pressure alone is insufficient to account for the rapid and widespread truncation of star-formation observed in cluster galaxies, or the morphological transformation of Sabs to S0s that is necessary to explain the Butcher-Oemler effect.
We present the first study of the effect of ram-pressure unwinding the spiral arms of cluster galaxies. We study 11 ram-pressure stripped galaxies from GASP (GAs Stripping Phenomena in galaxies) in which, in addition to more commonly observed jellyfi sh features, dislodged material also appears to retain the original structure of the spiral arms. Gravitational influence from neighbours is ruled out and we compare the sample with a control group of undisturbed spiral galaxies and simulated stripped galaxies. We first confirm the unwinding nature, finding the spiral arm pitch angle increases radially in 10 stripped galaxies and also simulated face-on and edge-on stripped galaxies. We find only younger stars in the unwound component, while older stars in the disc remain undisturbed. We compare the morphology and kinematics with simulated ram-pressure stripping galaxies, taking into account the estimated inclination with respect to the intracluster medium and find that in edge-on stripping, unwinding can occur due to differential ram-pressure caused by the disc rotation, causing stripped material to slow and pile-up. In face-on cases, gas removed from the outer edges falls to higher orbits, appearing to unwind. The pattern is fairly short-lived (<0.5Gyr) in the stripping process, occurring during first infall and eventually washed out by the ICM wind into the tail of the jellyfish galaxy. By comparing simulations with the observed sample, we find a combination of face-on and edge-on unwinding effects are likely to be occurring in our galaxies as they experience stripping with different inclinations with respect to the ICM.
Ram-pressure stripping (RPS) is a well observed phenomenon of massive spiral galaxies passing through the hot intra-cluster medium (ICM) of galaxy clusters. For dwarf galaxies (DGs) within a cluster, the transformation from gaseous to gas-poor system s by RPS is not easily observed and must happen in the outskirts of clusters. In a few objects in close by galaxy clusters and the field, RPS has been observed. Since cluster early-type DGs also show a large variety of internal structures (unexpected central gas reservoirs, blue stellar cores, composite radial stellar profiles), we aim in this study to investigate how ram pressure (RP) affects the interstellar gas content and therefore the star-formation (SF) activity. Using a series of numerical simulations, we quantify the dependence of the stripped-off gas on the velocity of the infalling DGs and on the ambient ICM density. We demonstrated that SF can be either suppressed or triggered by RP depending on the ICM density and the DGs mass. Under some conditions, RP can compress the gas, so that it is unexpectedly retained in the central DG region and forms stars. When gas clouds are still bound against stripping but lifted from a thin disk and fall back, their new stars form an ellipsoidal (young) stellar population already with a larger velocity dispersion without the necessity of harassment. Most spectacularly, star clusters can form downstream in stripped-off massive gas clouds in the case of strong RP. We compare our results to observations.
140 - P. Jachym , J. Koppen , J. Palous 2009
Ram pressure stripping of galaxies in clusters can yield gas deficient disks. Previous numerical simulations based on various approaches suggested that, except for near edge-on disk orientations, the amount of stripping depends very little on the inc lination angle. Following our previous study of face-on stripping, we extend the set of parameters with the disk tilt angle and explore in detail the effects of the ram pressure on the interstellar content (ISM) of tilted galaxies that orbit in various environments of clusters, with compact or extended distributions of the intra-cluster medium (ICM). We further study how results of numerical simulations could be estimated analytically. A grid of numerical simulations with varying parameters is produced using the tree/SPH code GADGET with a modified method for calculating the ISM-ICM interaction. These SPH calculations extend the set of existing results obtained from different codes using various numerical techniques. The simulations confirm the general trend of less stripping at orientations close to edge-on. The dependence on the disk tilt angle is more pronounced for compact ICM distributions, however it almost vanishes for strong ram pressure pulses. Although various hydrodynamical effects are present in the ISM-ICM interaction, the main quantitative stripping results appear to be roughly consistent with a simple scenario of momentum transfer from the encountered ICM. This behavior can also be found in previous simulations. To reproduce the numerical results we propose a fitting formula depending on the disk tilt angle and on the column density of the encountered ICM. Such a dependence is superior to that on the peak ram pressure used in previous simple estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا