ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nature and Origin of Substructure in the Outskirts of M31. I. Surveying the Stellar Content with HST/ACS

52   0   0.0 ( 0 )
 نشر من قبل Jenny Richardson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the largest and most detailed survey to date of the stellar populations in the outskirts of M31 based on the analysis of 14 deep HST/ACS pointings spanning the range 11.5-45.0 kpc. We conduct a quantitative comparison of the resolved stellar populations in these fields and identify several striking trends. The color-magnitude diagrams (CMDs), which reach ~3 magnitudes below the red clump, can be classified into two main categories based on their morphologies. `Stream-like fields, so named for their similarity to the CMD of the giant stellar stream, are characterized by a red clump that slants bluewards at fainter magnitudes and an extended horizontal branch. On the other hand, `disk-like fields exhibit rounder red clumps with significant luminosity width, lack an obvious horizontal branch and show evidence for recent star formation (~0.25 - 2.0 Gyr ago). We compare the spatial and line-of-sight distribution of stream-like fields with a recent simulation of the giant stream progenitor orbit and find an excellent agreement. These fields, found across the face of M31, attest to the high degree of pollution caused by this event. Disk-like material resides in the extended disk structure of M31 and is detected out to 44 kpc (projected); the uniform populations in these fields, including the ubiquitous presence of young populations, and the strong rotation reported elsewhere are most consistent with a scenario in which this structure has formed through heating and disruption of the existing thin disk, perhaps due to the impact of the giant stream progenitor. Our comparative analysis sheds new light on the likely composition of two of the ultra-deep pointings formerly presented as pure outer disk and pure halo in the literature.



قيم البحث

اقرأ أيضاً

Many clues about the galaxy assembly process lurk in the faint outer regions of galaxies. The low surface brightnesses of these parts pose a significant challenge for studies of diffuse light, and few robust constraints on galaxy formation models hav e been derived to date from this technique. Our group has pioneered the use of extremely wide-area star counts to quantitatively address the large-scale structure and stellar content of external galaxies at very faint light levels. We highlight here some results from our imaging and spectroscopic surveys of M31 and M33.
147 - A. D. Mackey 2006
A new population of extended, luminous globular clusters has recently been discovered in the outskirts of M31. These objects have luminosities typical of classical globular clusters, but much larger half-light radii. We report the first results from deep ACS imaging of four such clusters, one of which is a newly-discovered example lying at a projected distance of ~60 kpc from M31. Our F606W, F814W colour-magnitude diagrams extend ~3 magnitudes below the horizontal branch level, and clearly demonstrate, for the first time, that all four clusters are composed of >10 Gyr old, metal-poor stellar populations. No evidence for multiple populations is observed. From a comparison with Galactic globular cluster fiducials we estimate metallicities in the range -2.2 < [Fe/H] < -1.8. The observed horizontal branch morphologies show a clear second parameter effect between the clusters. Preliminary radial luminosity profiles suggest integrated magnitudes in the range -6.6 < M_V < -7.7, near the median value of the globular cluster luminosity function. Our results confirm that these four objects are bona fide old, metal-poor globular clusters, albeit with combined structures and luminosities unlike those observed for any other globular clusters in the Local Group or beyond.
We obtained optical imaging polarimetry with the ACS/HRC aboard the HST of the 9 closest radio-galaxies in the 3C catalogue with an FR I morphology. The nuclear sources seen in direct HST images in these galaxies are found to be highly polarized with levels in the range ~2-11 % with a median value of 7 %. We discuss the different mechanisms that produce polarized emission and conclude that the only viable interpretation is a synchrotron origin for the optical nuclei. This idea is strengthened by the analogy with the polarization properties of BL Lac objects, providing also further support to the FRI/BL Lac unified model. This confirms previous suggestions that the dominant emission mechanism in low luminosity radio-loud AGN is related to non-thermal radiation produced by the base of their jets. In addition to the nuclear polarization (and to the large scale optical jets), polarization is detected co-spatially with the dusty circumnuclear disks, likely due to dichroic transmission; the polarization vectors are tangential to the disks as expected when the magnetic field responsible for the grains alignment is stretched by differential rotation. We explored the possibility to detect the polarimetric signature of a misaligned radiation beam in FR I, expected in our sources in the frame of the FR I/ BL Lac unification. We did not find this effect in any of the galaxies, but our the results are not conclusive on whether a misaligned beam is indeed present in FR I.
83 - M. Bellazzini 2002
HST-WFPC2 F555W and F814W photometry were obtained for 16 fields of the luminous nearby spiral galaxy M31, sampling the stellar content of the disk and the halo at different distances from the center, from ~ 20 to ~ 150 arcmin (i.e. ~ 4.5 to 35 kpc), down to limiting V and I magnitudes of ~ 27. The Color-Magnitude diagrams (CMD) show the presence of complex stellar populations, including an intermediate age/young population and older populations with a wide range of metallicity. Those fields superposed on the disk of M31 generally show a blue plume of stars which we identify with main sequence members. Accordingly, the star formation rate over the last 0.5 Gyr appears to have varied dramatically with location in the disk. All the CMDs show a prominent Red Giant Branch (RGB) with a descending tip in the V band, characteristic of metallicity higher than 1/10 Solar. A red clump is detected in all of the fields, and a weak blue horizontal branch is frequently present. The metallicity distributions (MDs), obtained by comparison of the RGB stars with globular cluster templates, are basically similar in all the sampled fields: they all show a long, albeit scantly populated metal-poor tail and a main component at [Fe/H] ~ -0.6. However, some differences also exist, e.g. in some fields a very metal-rich ([Fe/H] >= -0.2) component is present. Whereas the fraction of metal-poor stars seems to be approximately constant in all fields, the fraction of very-metal-rich stars varies with position and seems to be more prominent in those fields superposed on the disk and/or with the presence of streams or substructures. This might indicate and possibly trace interaction effects with some companion, e.g. M32.
We present evidence for a metal-poor, [Fe/H]$sim-1.4$ $sigma$=0.2 dex, stellar halo component detectable at radii from 10 kpc to 70 kpc, in our nearest giant spiral neighbor, the Andromeda galaxy. This metal-poor sample underlies the recently-discove red extended rotating component, and has no detected metallicity gradient. This discovery uses a large sample of 9861 radial velocities of Red Giant Branch (RGB) stars obtained with the Keck-II telescope and DEIMOS spectrograph, with 827 stars with robust radial velocity measurements isolated kinematically to lie in the halo component primarily by windowing out the extended rotating component which dominates the photometric profile of Andromeda out to $<$50 kpc (de-projected). The stars lie in 54 spectroscopic fields spread over an 8 square degree region, and are expected to fairly sample the halo to a radius of $sim$70 kpc. The halo sample shows no significant evidence for rotation. Fitting a simple model in which the velocity dispersion of the component decreases with radius, we find a central velocity dispersion of $152kms$ decreasing by $-0.90kms/kpc$. By fitting a cosmologically-motivated NFW halo model to the halo stars we constrain the virial mass of M31 to be greater than $9.0 times 10^{11} msun$ with 99% confidence. The properties of this halo component are very similar to that found in our Milky Way, revealing that these roughly equal mass galaxies may have led similar accretion and evolutionary paths in the early Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا