ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift J1753.5-0127: The Black Hole Candidate with the shortest orbital period

104   0   0.0 ( 0 )
 نشر من قبل Cristina Zurita
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.Zurita




اسأل ChatGPT حول البحث

We present time-resolved photometry of the optical counterpart to the black hole candidate Swift J1753.5-0127, which has remained in the low/hard X-ray state and bright at optical/IR wavelengths since its discovery in 2005. At the time of our observations Swift J1753.5-0127 does not show a decay trend but remains stable at R=16.45 with a night to night variability of ~0.05 mag. The R-band light curves, taken from 2007 June 3 to August 31, are not sinusoidal, but exhibit a complex morphology with remarkable changes in shape and amplitude. The best period determination is 3.2443+-0.0010 hours. This photometric period is likely a superhump period, slightly larger than the orbital period. Therefore, Swift J1753.5-0127 is the black hole candidate with the shortest orbital period observed to date. Our estimation of the distance is comparable to values previously published and likely places Swift J1753.5-0127 in the Galactic halo.

قيم البحث

اقرأ أيضاً

220 - Paolo Soleri 2008
We present preliminary results from the analysis of simultaneous multiwavelength observations of the black hole candidate Swift J1753.5-0127. The source is still continuing its outburst started in May 2005, never leaving the Low/Hard State. In the X- ray energy spectra we confirm evidence for a thermal component at a very low luminosity possibly extending close to but not at the innermost stable orbit. This is unusual for black hole candidates in the Low/Hard State. Furthermore, we confirm that its radio emission is significantly fainter than expected from the relation observed in other black hole candidates between the observed radio/X-ray fluxes.
We present a spectral analysis of the black hole candidate and X-ray transient source Swift J1753.5 0127 making use of simultaneous observations of XMM-Newton and Rossi X-ray Timing Explorer (RXTE) in 2006, when the source was in outburst. The aim of this paper is to test whether a thermal component due to the accretion disc is present in the X-ray spectrum. We fit the data with a range of spectral models, and we find that for all of these models the fits to the X-ray energy spectra significantly require the addition of the disc black-body component. We also find a broad iron emission line at around 6.5 keV, most likely due to iron in the accretion disc. Our results confirm the existence of a cool inner disc extending near or close to the innermost circular orbit (ISCO).We further discovered broad emission lines of NVII and OVIII at ~ 0.52 keV and 0.65 keV, respectively in the RGS spectrum of Swift J1753.5-0127.
93 - P. Soleri 2012
We present our monitoring campaign of the outburst of the black-hole candidate Swift J1753.5-0127, observed with the Rossi X-ray Timing Explorer and the Swift satellites. After ~4.5 years since its discovery, the source had a transition to the hard i ntermediate state. We performed spectral and timing studies of the transition showing that, unlike the majority of the transient black holes, the system did not go to the soft states but it returned to the hard state after a few months. During this transition Swift J1753.5-0127 features properties which are similar to those displayed by the black hole Cygnus X-1. We compared Swift J1753.5-0127 to one dynamically confirmed black hole and two neutron stars showing that its power spectra are in agreement with the binary hosting a black hole. We also suggest that the prolonged period at low flux that followed the initial flare is reminiscent of that observed in other X-ray binaries, as well as in cataclysmic variables.
We report on radio and X-ray monitoring observations of the BHC Swift J1753.5-0127 taken over a ~10 year period. Presented are daily radio observations at 15 GHz with the AMI-LA and X-ray data from Swift XRT and BAT. Also presented is a deep 2hr JVLA observation taken in an unusually low-luminosity soft-state (with a low disk temperature). We show that although the source has remained relatively radio-quiet compared to XRBs with a similar X-ray luminosity in the hard-state, the power-law relationship scales as $zeta=0.96pm0.06$ i.e. slightly closer to what has been considered for radiatively inefficient accretion disks. We also place the most stringent limit to date on the radio-jet quenching in an XRB soft-state, showing the connection of the jet quenching to the X-ray power-law component; the radio flux in the soft-state was found to be $<21~mu$Jy, which is a quenching factor of $gtrsim25$
In studies of accreting black holes in binary systems, empirical relations have been proposed to quantify the coupling between accretion processes and ejection mechanisms. These processes are probed respectively by means of X-ray and radio/optical-in frared observations. The relations predict, given certain accretion conditions, the expected energy output in the form of a jet. We investigated this coupling by studying the black hole candidate Swift J1753.5-0127, via multiwavelength coordinated observations over a period of ~4 years. We present the results of our campaign showing that, all along the outburst, the source features a jet that is fainter than expected from the empirical correlation between the radio and the X-ray luminosities in hard spectral state. Because the jet is so weak in this system the near-infrared emission is, unusually for this state and luminosity, dominated by thermal emission from the accretion disc. We briefly discuss the importance and the implications of a precise determination of both the slope and the normalisation of the correlations, listing some possible parameters that broadband jet models should take into account to explain the population of sources characterized by a dim jet. We also investigate whether our data can give any hint about the nature of the compact object in the system, since its mass has not been dynamically measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا