ﻻ يوجد ملخص باللغة العربية
We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor $T_{mu u}$ constructed from sums of terms the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called {it universal} if, when evaluated on that Einstein metric, $T_{mu u}$ is a multiple of the metric. A Ricci flat classical solution is called {it strongly universal} if, when evaluated on that Ricci flat metric, $T_{mu u}$ vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalisation; Einstein metrics with holonomy ${rm Sim} (n-2)$ in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalised Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all 4-dimensional ${rm Sim}(2)$ Einstein metrics. We also discuss generalizations to higher dimensions.
We show that a large class of null electromagnetic fields are immune to any modifications of Maxwells equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classic
Field theory models of axion monodromy have been shown to exhibit vacuum energy sequestering as an emergent phenomenon for cancelling radiative corrections to the cosmological constant. We study one loop corrections to this class of models coming fro
In dRGT massive gravity, to get the equations of motion, the square root tensor is assumed to be invertible in the variation of the action. However, this condition can not be fulfilled when the reference metric is degenerate. This implies that the re
Recently, it is shown that many Greens functions are not unique at special points in complex momentum space using AdS/CFT. This phenomenon is similar to the pole-skipping in holographic chaos, and the special points are typically located at $omega_n
We study quantum corrections to hypersurfaces of dimension $d+1>2$ embedded in generic higher-dimensional spacetimes. Manifest covariance is maintained throughout the analysis and our methods are valid for arbitrary co-dimension and arbitrary bulk me