ﻻ يوجد ملخص باللغة العربية
We have studied the adsorption of gas molecules (CO, NO, NO2, O2, N2, CO2, and NH3) on graphene nanoribbons (GNRs) using first principles methods. The adsorption geometries, adsorption energies, charge transfer, and electronic band structures are obtained. We find that the electronic and transport properties of the GNR with armchair-shaped edges are sensitive to the adsorption of NH3 and the system exhibits n type semiconducting behavior after NH3 adsorption. Other gas molecules have little effect on modifying the conductance of GNRs. Quantum transport calculations further indicate that NH3 molecules can be detected out of these gas molecules by GNR based sensor.
The adsorption and diffusion of F2 molecules on pristine graphene have been studied using first-principles calculations. For the diffusion of F2 from molecular state in gas phase to the dissociative adsorption state on graphene surface, a kinetic bar
Defect is no longer deemed an adverse aspect of graphene. Contrarily, it can pave ways of extending applicability of graphene. Here, we discuss the effects of three types of defects on graphene: carbon deficiency, adatom (single Fe) dopant and introd
In this work we study thermoelectric properties of graphene nanoribbons with side-attached organic molecules. By adopting a single-band tight binding Hamiltonian and the Greens function formalism, we calculated the transmission and Seebeck coefficien
The ultimate aspiration of any detection method is to achieve such a level of sensitivity that individual quanta of a measured value can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far bee
Hydrogen adsorption on graphene can be increased by functionalization with Ti. This requires dispersing Ti islands on graphene as small and dense as possible, in order to increase the number of hydrogen adsorption sites per Ti atom. In this report, w