ترغب بنشر مسار تعليمي؟ اضغط هنا

Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission

376   0   0.0 ( 0 )
 نشر من قبل Benjamin Gold
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

[Abridged] We present updated estimates of Galactic foreground emission using seven years of WMAP data. Using the power spectrum of differences between multi-frequency template-cleaned maps, we find no evidence for foreground contamination outside of the updated (KQ85y7) foreground mask. We place a 15 microKelvin upper bound on rms foreground contamination in the cleaned maps used for cosmological analysis. We find no indication in the polarization data of an extra haze of hard synchrotron emission from energetic electrons near the Galactic center. We provide an updated map of the cosmic microwave background (CMB) using the internal linear combination (ILC) method, updated foreground masks, and updates to point source catalogs with 62 newly detected sources. Also new are tests of the Markov chain Monte Carlo (MCMC) foreground fitting procedure against systematics in the time-stream data, and tests against the observed beam asymmetry. Within a few degrees of the Galactic plane, WMAP total intensity data show a rapidly steepening spectrum from 20-40 GHz, which may be due to emission from spinning dust grains, steepening synchrotron, or other effects. Comparisons are made to a 1-degree 408 MHz map (Haslam et al.) and the 11-degree ARCADE 2 data (Singal et al.). We find that spinning dust or steepening synchrotron models fit the combination of WMAP and 408 MHz data equally well. ARCADE data appear inconsistent with the steepening synchrotron model, and consistent with the spinning dust model, though some discrepancies remain regarding the relative strength of spinning dust emission. More high-resolution data in the 10-40 GHz range would shed much light on these issues.
108 - C. Bennett 2003
Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the CMB from foreground emission. We define masks that excise regions of high foreground emission. The effectiveness of template fits to remove foregro und emission from the WMAP data is examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We construct a model of the Galactic emission components. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta ~ -2.5) near star-forming regions, especially in the plane, and steepest (beta ~ -3) in the halo. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta < -3. The modeled thermal dust spectral index is also steep in the WMAP bands, with beta ~ 2.2. Microwave and H alpha measurements of the ionized gas agree. Spinning dust emission is limited to < ~5% of the Ka-band foreground emission. A catalog of 208 point sources is presented. Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0 +- 1.4) 10^{-3} microK^2 sr at Q-band and negligible levels at V-band and W-band.
We present a full-sky model of polarized Galactic microwave emission based on three years of observations by the Wilkinson Microwave Anisotropy Probe (WMAP) at frequencies from 23 to 94 GHz. The model compares maps of the Stokes Q and U components fr om each of the 5 WMAP frequency bands in order to separate synchrotron from dust emission, taking into account the spatial and frequency dependence of the synchrotron and dust components. This simple two-component model of the interstellar medium accounts for at least 97% of the polarized emission in the WMAP maps of the microwave sky. Synchrotron emission dominates the polarized foregrounds at frequencies below 50 GHz, and is comparable to the dust contribution at 65 GHz. The spectral index of the synchrotron component, derived solely from polarization data, is -3.2 averaged over the full sky, with a modestly flatter index on the Galactic plane. The synchrotron emission has mean polarization fraction 2--4% in the Galactic plane and rising to over 20% at high latitude, with prominent features such as the North Galactic Spur more polarized than the diffuse component. Thermal dust emission has polarization fraction 1% near the Galactic center, rising to 6% at the anti-center. Diffuse emission from high-latitude dust is also polarized with mean fractional polarization 0.036 +/- 0.011.
Cosmology and other scientific results from the WMAP mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of ~2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of ~1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of ~2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly, errors in the measured disk temperature are ~0.5%.
We present a detailed analysis on the phases of the WMAP foregrounds (synchrotron, free-free and dust emission) of the WMAP K-W bands in order to estimate the significance of the variation of the spectral indices at different components. We first ext ract the spectral-index varying signals by assuming that the invariant part among different frequency bands have 100% cross-correlation of phases. We then use the minimization of variance, which is normally used for extracting the CMB signals, to extract the frequency independent signals. Such a common signal in each foreground component could play a significant role for any kind of component separation methods, because the methods cannot discriminate frequency independent foregrounds and CMB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا