ﻻ يوجد ملخص باللغة العربية
A data word is a sequence of pairs of a letter from a finite alphabet and an element from an infinite set, where the latter can only be compared for equality. Safety one-way alternating automata with one register on infinite data words are considered, their nonemptiness is shown EXPSPACE-complete, and their inclusion decidable but not primitive recursive. The same complexity bounds are obtained for satisfiability and refinement, respectively, for the safety fragment of linear temporal logic with freeze quantification. Dropping the safety restriction, adding past temporal operators, or adding one more register, each causes undecidability.
A data tree is an unranked ordered tree whose every node is labelled by a letter from a finite alphabet and an element (datum) from an infinite set, where the latter can only be compared for equality. The article considers alternating automata on dat
In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form $bigwedge_{i=1}^n mathbf{G}mathbf{F} varphi_i vee mathb
In this paper, we investigate statistics on alternating words under correspondence between ``possible reflection paths within several layers of glass and ``alternating words. For $v=(v_1,v_2,cdots,v_n)inmathbb{Z}^{n}$, we say $P$ is a path within $n$
In [1], we introduced the weakly synchronizing languages for probabilistic automata. In this report, we show that the emptiness problem of weakly synchronizing languages for probabilistic automata is undecidable. This implies that the decidability re
Controller synthesis for general linear temporal logic (LTL) objectives is a challenging task. The standard approach involves translating the LTL objective into a deterministic parity automaton (DPA) by means of the Safra-Piterman construction. One o