ﻻ يوجد ملخص باللغة العربية
We investigate the impact of the observed correlation between a galaxies shape and its surrounding density field on the measurement of third order weak lensing shear statistics. Using numerical simulations, we estimate the systematic error contribution to a measurement of the third order moment of the aperture mass statistic (GGG) from three-point intrinsic ellipticity correlations (III), and the three-point coupling between the weak lensing shear experienced by distant galaxies and the shape of foreground galaxies (GGI and GII). We find that third-order weak lensing statistics are typically more strongly contaminated by these physical systematics compared to second-order shear measurements, contaminating the measured three-point signal for moderately deep surveys with a median redshift z_m ~ 0.7 by ~ 15%. It has been shown that accurate photometric redshifts will be crucial to correct for this effect, once a model and the redshift dependence of the effect can be accurately constrained. To this end we provide redshift-dependent fitting functions to our results and propose a new tool for the observational study of intrinsic galaxy alignments. For a shallow survey with z_m ~ 0.4 we find III to be an order of magnitude larger than the expected cosmological GGG shear signal. Compared to the two-point intrinsic ellipticity correlation which is similar in amplitude to the two-point shear signal at these survey depths, third order statistics therefore offer a promising new way to constrain models of intrinsic galaxy alignments. Early shallow data from the next generation of very wide weak lensing surveys will be optimal for this type of study.
We use weak lensing data from the Hubble Space Telescope COSMOS survey to measure the second- and third-moments of the cosmic shear field, estimated from about 450,000 galaxies with average redshift <z> ~ 1.3. We measure two- and three-point shear st
We study the statistics of peaks in a weak lensing reconstructed mass map of the first 450 square degrees of the Kilo Degree Survey. The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We
Forthcoming experiments will enable us to determine tomographic shear spectra at a high precision level. Most predictions about them have until now been biased on algorithms yielding the expected linear and non-linear spectrum of density fluctuations
The current methods available to estimate gravitational shear from astronomical images of galaxies introduce systematic errors which can affect the accuracy of weak lensing cosmological constraints. We study the impact of KSB shape measurement bias o
Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for ga