ترغب بنشر مسار تعليمي؟ اضغط هنا

Bimodality in Damped Lyman alpha Systems

126   0   0.0 ( 0 )
 نشر من قبل Arthur M. Wolfe
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report evidence for a bimodality in damped Ly systems (DLAs). Using [C II] 158 mu cooling rates, lc, we find a distribution with peaks at lc=10^-27.4 and 10^-26.6 ergs s^-1 H^-1 separated by a trough at lc^crit ~= lc < 10^-27.0 ergs s^-1 H^-1. We divide the sample into low cool DLAs with lc < lc^crit and high cool DLAs with lc > lc^crit and find the Kolmogorv-Smirnov probabilities that velocity width, metallicity, dust-to-gas ratio, and Si II equivalent width in the two subsamples are drawn from the same parent population are small. All these quantities are significantly larger in the high cool population, while the H I column densities are indistinguishable in the two populations. We find that heating by X-ray and FUV background radiation is insufficient to balance the cooling rates of either population. Rather, the DLA gas is heated by local radiation fields. The rare appearance of faint, extended objects in the Hubble Ultra Deep Field rules out in situ star formation as the dominant star-formation mode for the high cool population, but is compatible with in situ star formation as the dominant mode for the low cool population. Star formation in the high cool DLAs likely arises in Lyman Break galaxies. We investigate whether these properties of DLAs are analogous to the bimodal properties of nearby galaxies. Using Si II equivalent width as a mass indicator, we construct bivariate distributions of metallicity, lc, and areal SFR versus the mass indicators. Tentative evidence is found for correlations and parallel sequences, which suggest similarities between DLAs and nearby galaxies. We suggest that the transition-mass model provides a plausible scenario for the bimodality we have found. As a result, the bimodality in current galaxies may have originated in DLAs.



قيم البحث

اقرأ أيضاً

We have identified a metal-strong (logN(Zn+) > 13.15 or logN(Si+) > 15.95) DLA (MSDLA) population from an automated quasar (QSO) absorber search in the Sloan Digital Sky Survey Data Release 3 (SDSS-DR3) quasar sample, and find that MSDLAs comprise ~5 % of the entire DLA population with z_abs > 2.2 found in QSO sightlines with r < 19.5. We have also acquired 27 Keck ESI follow-up spectra of metal-strong candidates to evaluate our automated technique and examine the MSDLA candidates at higher resolution. We demonstrate that the rest equivalent widths of strong ZnII 2026 and SiII 1808 lines in low-resolution SDSS spectra are accurate metal-strong indicators for higher-resolution spectra, and predict the observed equivalent widths and signal-to-noise ratios needed to detect certain extremely weak lines with high-resolution instruments. We investigate how the MSDLAs may affect previous studies concerning a dust-obscuration bias and the N(HI)-weighted cosmic mean metallicity <Z(z)>. Finally, we include a brief discussion of abundance ratios in our ESI sample and find that underlying mostly Type II supernovae enrichment are differential depletion effects due to dust (and in a few cases quite strong); we present here a handful of new Ti and Mn measurements, both of which are useful probes of depletion in DLAs. Future papers will present detailed examinations of particularly metal-strong DLAs from high-resolution KeckI/HIRES and VLT/UVES spectra.
We have collected data for 69 Damped Lyman-alpha (DLA) systems, to investigate the chemical evolution of galaxies in the redshift interval 0.0 < z < 4.4. In doing that, we have adopted the most general approach used so far to correct for dust depleti on. The best solution, obtained through chi^2 minimization, gives as output parameters the global DLA metallicity and the dust-to-metals ratio. Clear evolution of the metallicity vs. redshift is found (99.99% significance level), with average values going from ~1/30 solar at z~4.1 to ~3/5 solar at z~0.5. We also find that the majority of DLAs (~60%) shows dust depletion patterns which most closely resemble that of the warm halo clouds in the Milky Way, and have dust-to-metals ratios very close to warm halo clouds.
387 - Nissim Kanekar 2009
We report evidence for an anti-correlation between spin temperature $T_s$ and metallicity [Z/H], detected at $3.6 sigma$ significance in a sample of 26 damped Lyman-$alpha$ absorbers (DLAs) at redshifts $0.09 < z < 3.45$. The anti-correlation is dete cted at $3 sigma$ significance in a sub-sample of 20 DLAs with measured covering factors, implying that it does not stem from low covering factors. We obtain $T_s = (-0.68 pm 0.17) times {rm [Z/H]} + (2.13 pm 0.21)$ from a linear regression analysis. Our results indicate that the high $T_s$ values found in DLAs do not arise from differences between the optical and radio sightlines, but are likely to reflect the underlying gas temperature distribution. The trend between $T_s$ and [Z/H] can be explained by the larger number of radiation pathways for gas cooling in galaxies with high metal abundances, resulting in a high cold gas fraction, and hence, a low spin temperature. Conversely, low-metallicity galaxies have fewer cooling routes, yielding a larger warm gas fraction and a high $T_s$. Most DLAs at $z>1.7$ have low metallicities, [Z/H] $< -1$, implying that the HI in high-$z$ DLAs is predominantly warm. The anti-correlation between $T_s$ and [Z/H] is consistent with the presence of a mass-metallicity relation in DLAs, suggested by the tight correlation between DLA metallicity and the kinematic widths of metal lines. Most high-$z$ DLAs are likely to arise in galaxies with low masses ($M_{rm vir} < 10^{10.5} M_odot$), low metallicities ([Z/H]$< -1$, and low cold gas fractions.
We have completed spectroscopic observations using LRIS on the Keck 1 telescope of 30 very high redshift quasars, 11 selected for the presence of damped Ly-alpha absorption systems and 19 with redshifts z > 3.5 not previously surveyed for absorption systems. We have surveyed an additional 10 QSOs with the Lick 120 and the Anglo-Australian Telescope. We have combined these with previous data resulting in a statistical sample of 646 QSOs and 85 damped Ly-alpha absorbers with column densities N(HI) >= 2 x 10^20 atoms/cm^2 covering the redshift range 0.008 <= z <= 4.694. To make the data in our statistical sample more readily available for comparison with scenarios from various cosmological models, we provide tables that includes all 646 QSOs from our new survey and previously published surveys. They list the minimum and maximum redshift defining the redshift path along each line of sight, the QSO emission redshift, and when an absorber is detected, the absorption redshift and measured HI column density. [see the paper for the complete abstract]
The similarity between observed velocity structures of Al III and singly ionized species in damped Lyman-alpha systems (DLAs) suggests the presence of ionized gas in the regions where most metal absorption lines are formed. A simplified model consist ing of Region 1) a plane-parallel ionization bounded region illuminated by an internal radiation field, and Region 2) a neutral region with a negligible metal content is considered. We calculate photoionization equilibrium models for region 1, and constrain the ionization parameter by the observed N(Al III)/N(Si II) column density ratio. Under these conditions we find that ionization effects are important. If these effects are taken into account, the element abundance ratios in DLAs are quite consistent with those observed in Milky Way stars and in H II regions of local low-metallicity blue compact dwarf galaxies. In particular we cannot exclude the same primary N origin in both DLAs and metal-poor galaxies. No depletion of heavy elements on dust grains needs to be invoked, although our models do not exclude the presence of little depletion. Although highly simplified and relying on the strong assumption of a significantly lower metal content in region 2, our model appears to be supported by recent data on a local DLA and it is not in contradiction with the current knowledge on high redshift DLAs. If correct, it offers a clear simplification in the understanding of heavy element abundance ratios in DLAs and their comparison with the local Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا