ﻻ يوجد ملخص باللغة العربية
We present the results of millimeter and centimeter continuum observations, made with the IRAM 30m telescope and the VLA, toward a sample of 11 luminous IRAS sources classified as high-mass protostellar object candidates. We find 1.2 mm emission for all (but one) regions likely tracing the dust core in which the massive young stellar object is forming, for which we estimate masses ranging from 10 to 140 Msun. For all the sources, but one, we detect centimeter emission associated with the IRAS source, being compact or ultracompact HII region candidates, with early B-type stars as ionizing stars. The 7 mm emission is partially resolved for the four sources observed at this wavelength, with contribution of dust emission at 7 mm ranging from negligible to 44%. By combining our data with infrared surveys we fitted the spectral energy distribution of the sources. Finally, we find a correlation between the degree of disruption of the natal cloud, estimated from the fraction of dust emission associtaed with the centimeter source relative to the total amount of dust in its surroundings, and the size of the centimeter source. From this correlation, we establish an evolutionary sequence which is consistent with the evolutionary stage expected from maser/outflow/dense gas emission and with the infrared excess.
We present a study of molecular outflows using six molecular lines (including 12CO/13CO/C18O/HCO+(J = 1-0) and SiO/CS(J = 2-1)) toward nine nearby high-mass star-forming regions with accurate known distances. This work is based on the high-sensitivit
(Abridged) We present a large sample of o-H$_2$D$^+$ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through diff
We present sensitive Very Large Array observations with an angular resolution of a few arcseconds of the $J= 1 - 0$ line of SiO in the $v$=1 and 2 vibrationally excited states toward a sample of 60 Galactic regions in which stars of high or intermedi
Hydrogen fluoride has been established to be an excellent tracer of molecular hydrogen in diffuse clouds. In denser environments, however, the HF abundance has been shown to be approximately two orders of magnitude lower. We present Herschel/HIFI obs
The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of d