ترغب بنشر مسار تعليمي؟ اضغط هنا

The Milky Way Rotation Curve and its Vertical Derivatives Inside the Solar Circle

34   0   0.0 ( 0 )
 نشر من قبل Evan Levine
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the Galactic rotation curve and its first two vertical derivatives in the first and fourth quadrants of the Milky Way using the 21 cm VGPS and SGPS. We find tangent velocities of the atomic gas as a function of galactic longitude and latitude by fitting an analytic line profile to the edges of the velocity profiles. The shape of the analytic profile depends only on the tangent velocity and the velocity dispersion of the gas. We use two complementary methods to analyze the tangent velocities: a global model to fit typical parameter values and a local fitting routine to examine spatial variations. We confirm the validity of our fitting routines by testing simple models. Both the global and local fits are consistent with a vertical falloff in the rotation curve of -22 +/- 6 km/s/kpc within 100 pc of the Galactic midplane. The magnitude of the falloff is several times larger than what would be expected from the change in the potential alone, indicating some other physical process is important. The falloff we measure is consistent in magnitude with that measured in the halo gas of other galaxies.

قيم البحث

اقرأ أيضاً

In the fundamental quest of the rotation curve of the Milky Way, the tangent-point (TP) method has long been the simplest way to infer velocities for the inner, low latitude regions of the Galactic disk from observations of the gas component. We test the validity of the method on realistic gas distribution and kinematics of the Milky Way, using a numerical simulation of the Galaxy. We show that the resulting velocity profile strongly deviates from the true rotation curve of the simulation, as it overstimates it in the central regions, and underestimates it around the bar corotation. Also, its shape strongly depends on the orientation of the stellar bar. The discrepancies are caused by highly non-uniform azimuthal velocities, and the systematic selection by the TP method of high-velocity gas along the bar and spiral arms, or low-velocity gas in less dense regions. The velocity profile is in good agreement with the rotation curve only beyond corotation, far from massive asymmetric structures. Therefore the observed velocity profile of the Milky Way inferred by the TP method is expected to be very close to the true Galactic rotation curve for 4.5<R<8 kpc. Another consequence is that the Galactic velocity profile for R<4-4.5 kpc is very likely flawed by the non-uniform azimuthal velocities, and does not represent the true Galactic rotation curve, but instead local motions. The real shape of the innermost rotation curve is probably shallower than previously thought. Using a wrong rotation curve has a dramatic impact on the modelling of the mass distribution, in particular for the bulge component of which derived enclosed mass within the central kpc and scale radius are, respectively, twice and half of the actual values. We thus strongly argue against using terminal velocities or the velocity curve from the TP method for modelling the mass distribution of the Milky Way. (abridged)
Flat rotation curves of spiral galaxies are considered as an evidence for dark matter, but the rotation curve of the Milky Way is difficult to measure. Various objects were used to track the rotation curve in the outer parts of the Galaxy, but most s tudies rely on incomplete kinematical information and inaccurate distances. Here, we use a sample of 773 Classical Cepheids with precise distances based on mid-infrared period-luminosity relations coupled with proper motions and radial velocities from Gaia to construct the accurate rotation curve of the Milky Way up to the distance of ~20 kpc from the Galactic center. We use a simple model of Galactic rotation to measure the rotation speed of the Sun Theta_0 = 233.6 +/- 2.8 km/s, assuming a prior on the distance to the Galactic center R_0 = 8.122 +/- 0.031 kpc from the Gravity Collaboration. The rotation curve at Galactocentric distances 4 < R < 20 kpc is nearly flat with a small gradient of -1.34 +/- 0.21 km/s/kpc. This is the most accurate Galactic rotation curve at distances R > 12 kpc constructed so far.
307 - Yoshiaki Sofue 2020
We review the~current status of the~study of rotation curve (RC) of the~Milky Way, and~present a~unified RC from the~Galactic Center to the galacto-centric distance of about 100 kpc. The~RC is used to directly calculate the~distribution of the~surfac e mass density (SMD). We then propose a~method to derive the~distribution of dark matter (DM) density in the~in the~Milky Way using the~SMD distribution. The~best-fit dark halo profile yielded a local DM density of $rho_odot = 0.36pm 0.02$ GeV/cc. We also review the~estimations of the~local DM density in the~last decade, and~show that the~value is converging to a~value at $rho_odot=0.39pm 0.09$ GeV/cc.
The dust extinction curve is a critical component of many observational programs and an important diagnostic of the physics of the interstellar medium. Here we present new measurements of the dust extinction curve and its variation towards tens of th ousands of stars, a hundred-fold larger sample than in existing detailed studies. We use data from the APOGEE spectroscopic survey in combination with ten-band photometry from Pan-STARRS1, 2MASS, and WISE. We find that the extinction curve in the optical through infrared is well characterized by a one-parameter family of curves described by R(V). The extinction curve is more uniform than suggested in past works, with sigma(R(V)) = 0.18, and with less than one percent of sight lines having R(V) > 4. Our data and analysis have revealed two new aspects of Galactic extinction: first, we find significant, wide-area variations in R(V) throughout the Galactic plane. These variations are on scales much larger than individual molecular clouds, indicating that R(V) variations must trace much more than just grain growth in dense molecular environments. Indeed, we find no correlation between R(V) and dust column density up to E(B-V) ~ 2. Second, we discover a strong relationship between R(V) and the far-infrared dust emissivity.
We construct the rotation curve of the Milky Way in the extended solar neighbourhood using a sample of SEGUE (Sloan Extension for Galactic Understanding and Exploration) G-dwarfs. We investigate the rotation curve shape for the presence of any peculi arities just outside the solar radius as has been reported by some authors. We approach the problem in a framework of classical Jeans analysis. Using the most recent data from RAVE (RAdial Velocity Experiment), we determine the solar peculiar velocity and the radial scalelengths for the three populations of different metallicities representing the Galactic thin disc. Then with the same binning in metallicity for the SEGUE G-dwarfs, we construct the rotation curve in the range of Galactocentric distances 7-10 kpc. We derive the circular velocity by correcting the mean tangential velocity for the asymmetric drift in each distance bin. With SEGUE data we also calculate the radial scalelength of the thick disc taking as known the derived peculiar motion of the Sun and the slope of the rotation curve. The rotation curve constructed through SEGUE G-dwarfs appears to be smooth in the selected radial range. The local kinematics of the thin disc rotation as determined in the framework of our new careful analysis does not favour the presence of a massive overdensity ring just outside the solar radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا