ترغب بنشر مسار تعليمي؟ اضغط هنا

Identified charged antiparticle to particle ratios near midrapidity in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV

163   0   0.0 ( 0 )
 نشر من قبل Vasundhara Chetluru
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف B.Alver - et al




اسأل ChatGPT حول البحث

Antiparticle to particle ratios for identified protons, kaons and pions at sqrt(s) = 62.4 and 200 GeV in Cu+Cu collisions are presented as a function of centrality for the midrapidity region of 0.2 < eta < 1.4. No strong dependence on centrality is observed. For the <pbar>/<p> ratio at <p_T> ~ 0.51 GeV/c, we observe an average value of 0.50 +/- 0.003_(stat) +/- 0.04_(syst) and 0.77 +/- 0.008_(stat) +/- 0.05_(syst) for the 10% most central collisions of 62.4 and 200 GeV Cu+Cu, respectively. The values for all three particle species measured at sqrt(s) = 200 GeV are in agreement within systematic uncertainties with that seen in both heavier and lighter systems measured at the same RHIC energy. This indicates that system size does not appear to play a strong role in determining the midrapidity chemical freeze-out properties affecting the antiparticle to particle ratios of the three most abundant particle species produced in these collisions.

قيم البحث

اقرأ أيضاً

Transverse momentum distributions and yields for $pi^{pm}$, $K^{pm}$, $p$ and $bar{p}$ in $p+p$ collisions at $sqrt{s}$=200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). These data pr ovide important baseline spectra for comparisons with identified particle spectra in heavy ion collisions at RHIC. We present the inverse slope parameter $T_{rm inv}$, mean transverse momentum $<p_T>$ and yield per unit rapidity $dN/dy$ at each energy, and compare them to other measurements at different $sqrt{s}$ in $p+p$ and $p+bar{p}$ collisions. We also present the scaling properties such as $m_T$ scaling, $x_T$ scaling on the $p_T$ spectra between different energies. To discuss the mechanism of the particle production in $p+p$ collisions, the measured spectra are compared to next-to-leading-order or next-to-leading-logarithmic perturbative quantum chromodynamics calculations.
We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 to K+ pi- and bar{K*0} to K-p i+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, <pT>, are presented. The measured N(K*0)/N(K) and N(phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.
We report new results on identified (anti)proton and charged pion spectra at large transverse momenta (3<$p_{T}$<10 GeV/c) from Cu+Cu collisions at $sqrt{s_{NN}}$=200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This stu dy explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-$p_{T}$ and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au+Au data, and allow the detailed exploration for the on-set of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.
123 - B.Alver , et al 2005
We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 < p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta < 1.4. The nuclear modification factor R_AA is calculated relative to p+p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross-section, R_AA is observed to be systematically larger in Cu+Cu collisions compared to Au+Au. However, for the same number of participating nucleons, R_AA is essentially the same in both systems over the measured range of p_T, in spite of the significantly different geometries of the Cu+Cu and Au+Au systems.
We present a systematic analysis of two-pion interferometry in Au+Au collisions at $sqrt{s_{rm{NN}}}$ = 62.4 GeV and Cu+Cu collisions at $sqrt{s_{rm{NN}}}$ = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum d ependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا