ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast outflows in compact radio sources: evidence for AGN-induced feedback in the early stages of radio source evolution

84   0   0.0 ( 0 )
 نشر من قبل Joanna Holt
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Holt




اسأل ChatGPT حول البحث

We present intermediate resolution, wide wavelength coverage spectra for a complete sample of 14 compact radio sources taken with the aim of investigating the impact of the nuclear activity on the circumnuclear (ISM) in the early stages of radio source evolution. We observe spatially extended line emission (up to 20 kpc) in the majority of sources which is consistent with a quiescent halo. In the nuclear apertures we observe broad, highly complex emission line profiles. Multiple Gaussian modelling of the [O III]5007 line reveals 2-4 components which can have FWHM and blueshifts relative to the halo of up to 2000 km/s. We interpret these broad, blueshifted components as material in outflow and discuss the kinematical evidence for jet-driven outflows. Comparisons with samples in the literature show that compact radio sources harbour more extreme nuclear kinematics than their extended counterparts, a trend seen within our sample with larger velocities in the smaller sources. The observed velocities are also likely to be influenced by source orientation with respect to the observers line of sight. Nine sources have associated HI absorption. In common with the optical emission line gas, the HI profiles are often highly complex with the majority of the detected components significantly blueshifted, tracing outflows in the neutral gas. The sample has been tested for stratification in the ISM (FWHM/ionisation potential/critical density) as suggested by Holt et al. (2003) for PKS1345+12 but we find no significant trends within the sample using a Spearman Rank analysis. This study supports the idea that compact radio sources are young radio loud AGN observed during the early stages of their evolution and currently shedding their natal cocoons through extreme circumnuclear outflows.



قيم البحث

اقرأ أيضاً

Compact Symmetric Objects (CSOs) show radio features such as jets, lobes, hot spots that are contained within the central 1 kpc region of their host galaxy. Thus, they are thought to be among the progenitors of large-scale radio galaxies. A debate on whether the CSOs are compact primarily because they are young or because they are surrounded by a dense medium impacting their expansion is ongoing. Until now, attempts to discriminate between the environmental and genuine youthfulness scenarios have been inconclusive. We present a study of three CSOs selected on the basis of their puzzling X-ray absorbing properties in prior Beppo-SAX and/or Chandra X-ray Observatory data. Our new XMM-Newton observations unambiguously confirm the nature of their X-ray absorbers. Furthermore, for the first time, our X-ray data reveal the existence of a population of CSOs with intrinsic hydrogen column density $N_H > 10^{23}$ cm$^{-2}$ that is different from the population of X-ray unabsorbed CSOs. The two groups appear to be separated in the linear size vs. radio power plane. This finding suggests that a dense medium in X-ray obscured CSOs may be able to confine the radio jets. Alternatively, X-ray obscured CSOs could be seen as radio brighter than their unobscured counterparts either because they reside in a dense environment or because they have larger jet powers. Our results help constrain the origin of the X-ray emission and the location and size of the X-ray obscurer in CSOs, and indicate that the environment may play a key role during the initial expansion of a radio source.
448 - Minjin Kim 2013
We present near-infrared spectra of young radio quasars [P(1.4GHz) ~ 26-27 W/Hz] selected from the Wide-Field Infrared Survey Explorer. The detected objects have typical redshifts of z ~ 1.6-2.5 and bolometric luminosities ~ 10^47 erg/s. Based on the intensity ratios of narrow emission lines, we find that these objects are mainly powered by active galactic nuclei (AGNs), although star formation contribution cannot be completely ruled out. The host galaxies experience moderate levels of extinction, A(V) ~ 0-1.3 mag. The observed [O III] luminosities and rest-frame J-band magnitudes constrain the black hole masses to lie in the range ~ 10^8.9-10^9.7 solar mass. From the empirical correlation between black hole mass and host galaxy mass, we infer stellar masses of ~ 10^11.3-10^12.2 solar mass. The [O III] line is exceptionally broad, with full width at half maximum ~1300 to 2100 km/s, significantly larger than that of ordinary distant quasars. We argue that these large line widths can be explained by jet-induced outflows, as predicted by theoretical models of AGN feedback.
42 - R. Morganti 2005
We report the detection of fast (~ 1000 km/s), massive outflows of neutral gas observed -- using the WSRT -- as 21-cm HI absorption against the strong radio continuum of seven radio sources. The neutral outflows occur, in at least somes cases, at kpc distance from the nucleus, and they are most likely driven by the interactions between the expanding radio jets and the gaseous medium enshrouding the central regions. We estimate that the associated mass outflow rates are up to ~50 M_sun/yr, comparable (although at the lower end of the distribution) to the outflow rates found for starburst-driven superwinds in Ultra Luminous IR Galaxies (ULIRG). This suggests that massive, jet-driven outflows of neutral gas in radio-loud AGN can have as large an impact on the evolution of the host galaxies as the outflows associated with starbursts. A radio-loud phase of the AGN is likely a relatively common, albeit short, phase in the life of many (or even all) massive ellipticals. Jet-driven neutral outflows may represent one of the main feedback mechanisms in these galaxies.
The data reported in Plancks Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measu rement extends to the rarest and brightest sources in the sky. At lower frequencies (30, 44, and 70 GHz) our counts are in very good agreement with estimates based on WMAP data, being somewhat deeper at 30 and 70 GHz, and somewhat shallower at 44 GHz. Plancks source counts at 143 and 217 GHz join smoothly with the fainter ones provided by the SPT and ACT surveys over small fractions of the sky. An analysis of source spectra, exploiting Plancks uniquely broad spectral coverage, finds clear evidence of a steepening of the mean spectral index above about 70 GHz. This implies that, at these frequencies, the contamination of the CMB power spectrum by radio sources below the detection limit is significantly lower than previously estimated.
Combining measurements taken using the Wilkinson Microwave Anisotropy Probe (WMAP) from 2001 to 2008 with measurements taken using Planck from 2009 to 2010, we investigate the long-term flux density variability of extragalactic radio sources selected from the Planck Early Release Compact Source Catalogue. The single-year, single-frequency WMAP maps are used to estimate yearly-averaged flux densities of the sources in the four WMAP bands: Ka (33 GHz), Q (41 GHz), V (61 GHz), and W (94 GHz). We identify 82, 67, 32, and 15 sources respectively as variable at greater than 99% confidence level in these four bands. The amplitudes of variation are comparable between bands, and are not correlated with either the flux densities or the spectral indices of the sources. The number counts of WMAP Ka-band sources are stable from year to year despite the fluctuation caused by individual source variability. Most of our sources show strong correlation in variability between bands. Almost all the sources that show variability are blazars. We have attempted to fit two simple, four-parameter models to the time-series of 32 sources showing correlated variability at multiple frequencies - a long-term flaring model and a rotating-jet model. We find that 19 sources (60%) can be fit with the simple rotating-jet model, and ten of these also fit the simple long-term flaring model. The remaining 13 sources (40%) show more complex variability behaviour that is not consistent with either model. Extended radio galaxies in our sample show no sign of variability, as expected, with the exception of Pictor A for which we report evidence for a millimetre flare lasting between 2002 and 2010.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا