ﻻ يوجد ملخص باللغة العربية
We analyzed the microlensing of the X-ray and optical emission of the lensed quasar PG 1115+080. We find that the effective radius of the X-ray emission is 1.3(+1.1 -0.5) dex smaller than that of the optical emission. Viewed as a thin disk observed at inclination angle i, the optical accretion disk has a scale length, defined by the point where the disk temperature matches the rest frame energy of the monitoring band (kT=hc/lambda_rest with lambda_rest=0.3 micron), of log[(r_{s,opt}/cm)(cos(i) / 0.5)^{1/2}] = 16.6 pm 0.4. The X-ray emission region (1.4-21.8 keV in the rest frame) has an effective half-light radius of log[r_{1/2,X}/cm] = 15.6 (+0.6-0.9}. Given an estimated black hole mass of 1.2 * 10^9 M_sun, corresponding to a gravitational radius of log[r_g/cm] = 14.3, the X-ray emission is generated near the inner edge of the disk while the optical emission comes from scales slightly larger than those expected for an Eddington-limited thin disk. We find a weak trend supporting models with low stellar mass fractions near the lensed images, in mild contradiction to inferences from the stellar velocity dispersion and the time delays.
We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our resuls are based on almost daily observations for seven months at the ESO MPIA 2.2m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per
Time delay measurements have recently been reported for the lensed quasar PG 1115+080. These measurements can be used to derive Ho, but only if we can constrain the lensing potential. We have applied a recently developed deconvolution technique to an
Gravitational lenses that produce multiple images of background quasars can be an invaluable cosmological tool. Deriving cosmological parameters, however, requires modeling the potential of the lens itself. It has been estimated that up to a quarter
Hubble Space Telescope observations of the gravitational lens PG 1115+080 in the infrared show the known z =0.310 lens galaxy and reveal the z = 1.722 quasar host galaxy. The main lens galaxy G is a nearly circular (ellipticity < 0.07) elliptical gal
We analyze V, I and H band HST images and two seasons of R-band monitoring data for the gravitationally lensed quasar SDSS0924+0219. We clearly see that image D is a point-source image of the quasar at the center of its host galaxy. We can easily tra