ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Black Rings on Eguchi-Hanson Space

312   0   0.0 ( 0 )
 نشر من قبل Shinya Tomizawa
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Shinya Tomizawa




اسأل ChatGPT حول البحث

We construct new supersymmetric multi-black ring solutions on the Eguchi-Hanson base space as solutions of the five-dimensional minimal supergravity. The space-time has an asymptotically locally Euclidean time slice, i.e., it has the spatial infinity with the topology of the lens space $L(2;1)=S^3/Z_2$. The configurations of black rings are restricted by the requirement of the absence of a Dirac-Misner string everywhere outside horizons. Especially, in the case of two black rings, the solutions have the limit to a pair of rotating black holes with the horizon topology of S^3.



قيم البحث

اقرأ أيضاً

Using the numerical method, we study dynamics of coalescing black holes on the Eguchi-Hanson base space. Effects of a difference in spacetime topology on the black hole dynamics is discussed. We analyze appearance and disappearance process of margina l surfaces. In our calculation, the area of a coverall black hole horizon at the creation time in the coalescing black holes solutions on Eguchi-Hanson space is larger than that in the five-dimensional Kastor-Traschen solutions. This fact suggests that the black hole production on the Eguchi-Hanson space is easier than that on the flat space.
We consider a model of $F(R)$ gravity in which exponential and power corrections to Einstein-$Lambda$ gravity are included. We show that this model has 4-dimensional Eguchi-Hanson type instanton solutions in Euclidean space. We then seek solutions to the five dimensional equations for which space-time contains a hypersurface corresponding to the Eguchi-Hanson space. We obtain analytic solutions of the $F(R)$ gravitational field equations, and by assuming certain relationships between the model parameters and integration constants, find several classes of exact solutions. Finally, we investigate the asymptotic behavior of the solutions and compute the second derivative of the $F(R)$ function with respect to the Ricci scalar to confirm Dolgov-Kawasaki stability.
We construct new solutions of the vacuum Einstein field equations in four dimensions via a solution generating method utilizing the SL(2,R) symmetry of the reduced Lagrangian. We apply the method to an accelerating version of the Zipoy-Voorhees solut ion and generate new solutions which we interpret to be the accelerati
We construct five dimensional black rings in global anti-de Sitter space using numerical methods. These rings satisfy the BPS bound $| J | < M ell$, but the angular velocity always violates the Hawking-Reall bound $| Omega_H ell | leq 1$, indicating that they should be unstable under superradiance. At high temperatures, the limit $| Omega_H ell | searrow 1$ is attained by thin rings with an arbitrarily large radius. However, at sufficiently low temperatures, this limit is saturated by a new kind of rings, whose outer circle can still be arbitrarily long while the hole in the middle does not grow proportionally. This gives rise to a membrane-like horizon geometry, which does not have an asymptotically flat counterpart. We find no evidence for thin AdS black rings whose transverse $S^2$ is much larger than the radius of AdS, $ell$, and thus these solutions never fall into the hydrodynamic regime of the dual CFT. Thermodynamically, we find that AdS black rings never dominate the grand canonical ensemble. The behaviour of our solutions in the microcanonical ensemble approaches known perturbative results in the thin-ring limit.
Five dimensional neutral rotating black rings are described from a Randall-Sundrum brane world perspective in the bulk black string framework. To this end we consider a rotating black string extension of a five dimensional black ring into the bulk of a six dimensional Randall-Sundrum brane world with a single four brane. The bulk solution intercepts the four brane in a five dimensional black ring with the usual curvature singularity on the brane. The bulk geodesics restricted to the plane of rotation of the black ring are constructed and their projections on the four brane match with the usual black ring geodesics restricted to the same plane. The asymptotic nature of the bulk geodesics are elucidated with reference to a bulk singularity at the AdS horizon. We further discuss the description of a brane world black ring as a limit of a boosted bulk black 2 brane with periodic identification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا