ﻻ يوجد ملخص باللغة العربية
We have designed and experimentally implemented a circuit of inductively-coupled superconducting charge qubits, where a Josephson junction is used as an inductance, and the coupling between the qubits is controlled by an applied magnetic flux. Spectroscopic measurements on the circuit are in good agreement with theoretical calculations. We observed anticrossings which originate from the coupling between the qubit and the plasma mode of the Josephson junction. Moreover, the size of the anticrossing depends on the external magnetic flux, which demonstrates the controllability of the coupling.
We present an experimental realization of the transmon qubit, an improved superconducting charge qubit derived from the Cooper pair box. We experimentally verify the predicted exponential suppression of sensitivity to 1/f charge noise [J. Koch et al.
We have carried out spectroscopic measurements of a system of three strongly coupled four-junction flux qubits. The samples studied cover a wide range of parameters with the coupling energy between neighboring qubits varying between 0.75 GHz and 6.05
We directly observe low-temperature non-equilibrium quasiparticle tunneling in a pair of charge qubits based on the single Cooper-pair box. We measure even- and odd-state dwell time distributions as a function of temperature, and interpret these resu
We derive a general scattering-matrix formula for the pumped current through a mesoscopic region attached to a normal and a superconducting lead. As applications of this result we calculate the current pumped through (i) a pump in a wire, (ii) a quan
We study theoretically how decoherence affects superposition states composed of entangled states in inductively coupled two superconducting flux-qubits. We discover that the quantum fluctuation of an observable in a coupled flux-qubit system plays a