ﻻ يوجد ملخص باللغة العربية
Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.
We study a rotating atomic Fermi gas near a narrow s-wave Feshbach resonance in a uniaxial harmonic trap with frequencies $Omega_perp$, $Omega_z$. Our primary prediction is the upper-critical angular velocity, $omega_{c2} (delta,T)$, as a function of
We study the expansion of a rotating, superfluid Fermi gas. The presence and absence of vortices in the rotating gas is used to distinguish superfluid and normal parts of the expanding cloud. We find that the superfluid pairs survive during the expan
It is well known that bosons on an optical lattice undergo a second-order superfluid-insulator transition (SIT) when the lattice potential increases. In this paper we study SIT when fermions coexist with the bosons. We find that the critical properti
We investigate a Bose-Einstein condensate in strong interaction with a single impurity particle. While this situation has received considerable interest in recent years, the regime of strong coupling remained inaccessible to most approaches due to an
This paper presents the results of specific-heat and magnetization measurements, in particular their field-orientation dependence, on the first discovered heavy-fermion superconductor CeCu$_2$Si$_2$ ($T_{rm c} sim 0.6$ K). We discuss the superconduct