ﻻ يوجد ملخص باللغة العربية
Lepton-flavour violating tau-decays are predicted in many extensions of the Standard Model at a rate observable at future collider experiments. In this article we focus on the decay tau to mu mu antimu, which is a promising channel to observe lepton-flavour violation at the Large Hadron Collider LHC. We present analytic expressions for the differential decay width derived from a model-independent effective Lagrangian with general four-fermion operators, and estimate the experimental acceptance for detecting the decay tau to mu mu antimu at the LHC. Specific emphasis is given to decay angular distributions and how they can be used to discriminate new physics models. We provide specific predictions for various extensions of the Standard Model, including supersymmetric, little Higgs and technicolour models.
A search for the lepton flavour violating decay $tau^-to mu^-mu^+mu^-$ is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of $1.0mathrm{,fb}^{-1}$ of proton-proton collisions at a centre-of-mass energy of $
We present a new result based on an analysis of the data collected by the MEG detector at the Paul Scherrer Institut in 2009 and 2010, in search of the lepton flavour violating decay mu->e gamma. The likelihood analysis of the combined data sample, w
Supposing only Lorentz and the gauge invariances of the Lagrangian, we derive energy and angular distributions for $tau^pm to mu^pm mu^pm mu^mp$ lepton flavor violating decay process. Using these results, we discuss methods to determine the parameter
A sensitive search for the lepton-number-violating decay $Xi^-to p mu^-mu^-$ has been performed using a sample of $sim10^9$ $Xi^-$ hyperons produced in 800 GeV/$c$ $p$-Cu collisions. We obtain $mathcal{B}(Xi^-to p mu^-mu^-)< 4.0times 10^{-8}$ at 90%