ترغب بنشر مسار تعليمي؟ اضغط هنا

Deconstructing Disk Velocity Distribution Functions in the Disk-Mass Survey

42   0   0.0 ( 0 )
 نشر من قبل Kyle Westfall
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kyle B. Westfall




اسأل ChatGPT حول البحث

We analyze integral-field ionized gas and stellar line-of-sight kinematics in the context of determining the stellar velocity ellipsoid for spiral galaxies observed by the Disk-Mass Survey. Our new methodology enables us to measure, for the first time, a radial gradient in the ellipsoid ratio sigma_z / sigma_R. Random errors in this decomposition are 15% at two disk scale-lengths.

قيم البحث

اقرأ أيضاً

We are studying the mass distribution in a sample of 50 early type spiral galaxies, with morphological type betweens S0 and Sab and absolute magnitudes M_B between -18 and -22; they form the massive and high-surface brightness extreme of the disk gal axy population. Our study is designed to investigate the relation between dark and luminous matter in these systems, of which very little yet is known. From a combination of WSRT HI observations and long-slit optical spectra, we have obtained high-quality rotation curves. The rotation velocities always rise very fast in the center; in the outer regions, they are often declining, with the outermost measured velocity 10-25% lower than the maximum. We decompose the rotation curves into contributions from the luminous (stellar and gaseous) and dark matter. The stellar disks and bulges always dominate the rotation curves within the inner few disk scale lengths, and are responsible for the decline in the outer parts. As an example, we present here the decompositions for UGC 9133. We are able to put tight upper and lower limits on the stellar mass-to-light ratios.
We present deep B- and R-band surface photometry for a sample of 21 galaxies with morphological types between S0 and Sab. We present radial profiles of surface brightness, colour, ellipticity, position angle and deviations of axisymmetry for all gala xies, as well as isophotal and effective radii and total magnitudes. We have decomposed the images into contributions from a spheroidal bulge and a flat disk, using an interactive, 2D decomposition technique. We study in detail the relations between various bulge and disk parameters. In particular, we find that the bulges of our galaxies have surface brightness profiles ranging from exponential to De Vaucouleurs, with the average value of the Sersic shape parameter n being 2.5. In agreement with previous studies, we find that the shape of the bulge intensity distribution depends on luminosity, with the more luminous bulges having more centrally peaked light profiles. By comparing the ellipticity of the isophotes in the bulges to those in the outer, disk dominated regions, we are able to derive the intrinsic axis ratio q_b of the bulges. The average axis ratio is 0.55, with an rms spread of 0.12. None of the bulges in our sample is spherical, whereas in some cases, the bulges can be as flat as q_b = 0.3 - 0.4. The bulge flattening seems to be weakly coupled to luminosity, more luminous bulges being on average slightly more flattened than their lower-luminosity counterparts. Our finding that most bulges are significantly flattened and have an intensity profile shallower than R^{1/4} suggests that `pseudobulges, formed from disk material by secular processes, do not only occur in late-type spiral galaxies, but are a common feature in early-type disk galaxies as well. (abridged)
As protostars evolve from optically faint / infrared bright (Class I) sources to optically bright / infrared faint (Class II) the solid material in their surrounding disks accumulates into planetesimals and protoplanets. The nearby, young Ophiuchus s tar-forming region contains hundreds of protostars in a range of evolutionary states. Using the Atacama Large Millimeter Array to observe their millimeter continuum emission, we have measured masses of, or placed strong upper limits on, the dust content of 279 disks. The masses follow a log-normal distribution with a clear trend of decreasing mass from less to more evolved protostellar infrared class. The (logarithmic) mean Class I disk mass, M = 3.8 M_Earth, is about 5 times greater than the mean Class II disk mass, but the dispersion in each class is so high, sigma(logM) ~ 0.8-1, that there is a large overlap between the two distributions. The disk mass distribution of flat-spectrum protostars lies in between Classes I and II. In addition, three Class III sources with little to no infrared excess are detected with low disk masses, M ~ 0.3 M_Earth. Despite the clear trend of decreasing disk mass with protostellar evolutionary state in this region, a comparison with surveys of Class II disks in other regions shows that masses do not decrease monotonically with age. This suggests that the cloud-scale environment may determine the initial disk mass scale or that there is substantial dust regeneration after 1 Myr.
72 - G. Gentile , C. Tydtgat , M. Baes 2015
We present the stellar and gaseous kinematics of an Sb galaxy, NGC 3223, with the aim of determining the vertical and radial stellar velocity dispersion as a function of radius, which can help to constrain disk heating theories. Together with the obs erved NIR photometry, the vertical velocity dispersion is also used to determine the stellar mass-to-light (M/L) ratio, typically one of the largest uncertainties when deriving the dark matter distribution from the observed rotation curve. We find a vertical-to-radial velocity dispersion ratio of sigma_z/sigma_R=1.21+-0.14, significantly higher than expectations from known correlations, and a weakly-constrained Ks-band stellar M/L ratio in the range 0.5-1.7, at the high end of (but consistent with) the predictions of stellar population synthesis models. Such a weak constraint on the stellar M/L ratio, however, does not allow us to securely determine the dark matter density distribution. To achieve this, either a statistical approach or additional data (e.g. integral-field unit) are needed.
We report on new measurements of the luminosity function (LF) and mass function (MF) of field low-mass dwarfs derived from Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6) photometry. The analysis incorporates ~15 million low-mass stars (0.1 Msun < M < 0.8 Msun), spread over 8,400 square degrees. Stellar distances are estimated using new photometric parallax relations, constructed from ugriz photometry of nearby low-mass stars with trigonometric parallaxes. We use a technique that simultaneously measures Galactic structure and the stellar LF from 7 < M_r < 16. We compare the LF to previous studies and convert to a MF using the mass-luminosity relations of Delfosse et al., 2000. The system MF, measured over -1.0 < log M/Msun < -0.1, is well-described by a log-normal distribution with Mo = 0.25 Msun. We stress that our results should not be extrapolated to other mass regimes. Our work generally agrees with prior low-mass stellar MFs and places strong constraints on future star-formation studies of the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا