ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward Best Isoperimetric Constants for $(H^1,BMO)$-Normal Conformal Metrics on $mathbb R^n$, $nge 3$

46   0   0.0 ( 0 )
 نشر من قبل Jie Xiao
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Jie Xiao




اسأل ChatGPT حول البحث

The aim of this article is: (a) To establish the existence of the best isoperimetric constants for the $(H^1,BMO)$-normal conformal metrics $e^{2u}|dx|^2$ on $mathbb R^n$, $nge 3$, i.e., the conformal metrics with the Q-curvature orientated conditions $$ (-Delta)^{n/2}uin H^1(mathbb R^n) & u(x)=hbox{const.}+frac{int_{mathbb R^n}(logfrac{|cdot|}{|x-cdot|})(-Delta)^{n/2} u(cdot) dmathcal{H}^n(cdot)}{2^{n-1}pi^{n/2}Gamma(n/2)}; $$ (b) To prove that $(nomega_n^frac1n)^frac{n}{n-1}$ is the optimal upper bound of the best isoperimetric constants for the complete $(H^1,BMO)$-normal conformal metrics with nonnegative scalar curvature; (c) To find the optimal upper bound of the best isoperimetric constants via the quotients of two power integrals of Greens functions for the $n$-Laplacian operators $-hbox{div}(| abla u|^{n-2} abla u)$.

قيم البحث

اقرأ أيضاً

Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an d bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
159 - M. I. Jimenez , R. Tojeiro 2021
In this article we complete the classification of the umbilical submanifolds of a Riemannian product of space forms, addressing the case of a conformally flat product $mathbb{H}^ktimes mathbb{S}^{n-k+1}$, which has not been covered in previous works on the subject. We show that there exists precisely a $p$-parameter family of congruence classes of umbilical submanifolds of $mathbb{H}^ktimes mathbb{S}^{n-k+1}$ with substantial codimension~$p$, which we prove to be at most $mbox{min},{k+1, n-k+2}$. We study more carefully the cases of codimensions one and two and exhibit, respectively, a one-parameter family and a two-parameter family (together with three extra one-parameter families) that contain precisely one representative of each congruence class of such submanifolds. In particular, this yields another proof of the classification of all (congruence classes of) umbilical submanifolds of $mathbb{S}^ntimes mathbb{R}$, and provides a similar classification for the case of $mathbb{H}^ntimes mathbb{R}$. We determine all possible topological types, actually, diffeomorphism types, of a complete umbilical submanifold of $mathbb{H}^ktimes mathbb{S}^{n-k+1}$. We also show that umbilical submanifolds of the product model of $mathbb{H}^ktimes mathbb{S}^{n-k+1}$ can be regarded as rotational submanifolds in a suitable sense, and explicitly describe their profile curves when $k=n$. As a consequence of our investigations, we prove that every conformal diffeomorphism of $mathbb{H}^ktimes mathbb{S}^{n-k+1}$ onto itself is an isometry.
137 - Zhuobin Liang , Xiao Zhang 2021
We prove the positive energy conjecture for a class of asymptotically Horowitz-Myers metrics on $mathbb{R}^{2}timesmathbb{T}^{n-2}$. This generalizes the previous results of Barzegar-Chru{s}ciel-H{o}rzinger-Maliborski-Nguyen as well as the authors.
Given a hypersurface $M$ of null scalar curvature in the unit sphere $mathbb{S}^n$, $nge 4$, such that its second fundamental form has rank greater than 2, we construct a singular scalar-flat hypersurface in $Rr^{n+1}$ as a normal graph over a trunca ted cone generated by $M$. Furthermore, this graph is 1-stable if the cone is strictly 1-stable.
We prove a version of the strong half-space theorem between the classes of recurrent minimal surfaces and complete minimal surfaces with bounded curvature of $mathbb{R}^{3}_{raisepunct{.}}$ We also show that any minimal hypersurface immersed with bou nded curvature in $Mtimes R_+$ equals some $Mtimes {s}$ provided $M$ is a complete, recurrent $n$-dimensional Riemannian manifold with $text{Ric}_M geq 0$ and whose sectional curvatures are bounded from above. For $H$-surfaces we prove that a stochastically complete surface $M$ can not be in the mean convex side of a $H$-surface $N$ embedded in $R^3$ with bounded curvature if $sup vert H_{_M}vert < H$, or ${rm dist}(M,N)=0$ when $sup vert H_{_M}vert = H$. Finally, a maximum principle at infinity is shown assuming $M$ has non-empty boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا