ﻻ يوجد ملخص باللغة العربية
We investigate the canonical quantization in the framework of N=1 simple supergravity for the case of a very simple gravitational midisuperspace described by Gowdy $T^3$ cosmological models. We consider supersymmetric quantum cosmology in the mentioned midisuperspace, where a matrix representation for the gravitino covector--spinor is used. The full Lorentz constraint and its implications for the wave function of the universe are analyzed in detail. We found that there are indeed physical states in the midisuperspace sector of the theory in contrast to the case of minisuperspace where there exist no physical states.
In this work a supersymmetric cosmological model is analyzed in which we consider a general superfield action of a homogeneous scalar field supermultiplet interacting with the scale factor in a supersymmetric FRW model. There appear fermionic superpa
In this paper, we study a class of symmetry reduced models of $mathcal{N}=1$ supergravity using self-dual variables. It is based on a particular Ansatz for the gravitino field as proposed by DEath et al. We show that the essential part of the constra
We study the effects of an information-theoretically motivated nonlinear correction to the Wheeler-deWitt equation in the minisuperspace scheme for flat, $k=0$, Friedmann-Robertson-Walker (FRW) universes. When the only matter is a cosmological consta
We present a short review of possible applications of the Wheeler-De Witt equation to cosmological models based on the low-energy string effective action, and characterised by an initial regime of asymptotically flat, low energy, weak coupling evolut
Lectures by the author at the 1986 Cargese summer school modestly corrected and uploaded for greater accessibility. Some of the authors views on the quantum mechanics of cosmology have changed from those presented here but may still be of historical