ﻻ يوجد ملخص باللغة العربية
We employ a combination of optical UV- and electron-beam-lithography to create an atom chip combining sub-micron wire structures with larger conventional wires on a single substrate. The new multi-layer fabrication enables crossed wire configurations, greatly enhancing the flexibility in designing potentials for ultra cold quantum gases and Bose-Einstein condensates. Large current densities of >6 x 10^7 A/cm^2 and high voltages of up to 65 V across 0.3 micron gaps are supported by even the smallest wire structures. We experimentally demonstrate the flexibility of the next generation atom chip by producing Bose-Einstein condensates in magnetic traps created by a combination of wires involving all different fabrication methods and structure sizes.
Concave pyramids are created in the (100) surface of a silicon wafer by anisotropic etching in potassium hydroxide. High quality micro-mirrors are then formed by sputtering gold onto the smooth silicon (111) faces of the pyramids. These mirrors show
The limitations for the coherent manipulation of neutral atoms with fabricated solid state devices, so-called `atom chips, are addressed. Specifically, we examine the dominant decoherence mechanism, which is due to the magnetic noise originating from
Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to
Surface based geometries of microfabricated wires or patterned magnetic films can be used to magnetically trap and manipulate ultracold neutral atoms or Bose-Einstein condensates. We investigate the magnetic properties of such atom chips using a scan
We report on the integration of small-scale optical components into silicon wafers for use in atom chips. We present an on-chip fibre-optic atom detection scheme that can probe clouds with small atom numbers. The fibres can also be used to generate m