ترغب بنشر مسار تعليمي؟ اضغط هنا

Descent methods for Nonnegative Matrix Factorization

182   0   0.0 ( 0 )
 نشر من قبل Ngoc-Diep Ho
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting this method as a rank-one approximation of the residue matrix, we prove that it emph{converges} and also extend it to the nonnegative tensor factorization and introduce some variants of the method by imposing some additional controllable constraints such as: sparsity, discreteness and smoothness.



قيم البحث

اقرأ أيضاً

140 - Stephen A. Vavasis 2007
Nonnegative matrix factorization (NMF) has become a prominent technique for the analysis of image databases, text databases and other information retrieval and clustering applications. In this report, we define an exact version of NMF. Then we establ ish several results about exact NMF: (1) that it is equivalent to a problem in polyhedral combinatorics; (2) that it is NP-hard; and (3) that a polynomial-time local search heuristic exists.
This paper is concerned with improving the empirical convergence speed of block-coordinate descent algorithms for approximate nonnegative tensor factorization (NTF). We propose an extrapolation strategy in-between block updates, referred to as heuris tic extrapolation with restarts (HER). HER significantly accelerates the empirical convergence speed of most existing block-coordinate algorithms for dense NTF, in particular for challenging computational scenarios, while requiring a negligible additional computational budget.
We propose a novel model for a topic-aware chatbot by combining the traditional Recurrent Neural Network (RNN) encoder-decoder model with a topic attention layer based on Nonnegative Matrix Factorization (NMF). After learning topic vectors from an au xiliary text corpus via NMF, the decoder is trained so that it is more likely to sample response words from the most correlated topic vectors. One of the main advantages in our architecture is that the user can easily switch the NMF-learned topic vectors so that the chatbot obtains desired topic-awareness. We demonstrate our model by training on a single conversational data set which is then augmented with topic matrices learned from different auxiliary data sets. We show that our topic-aware chatbot not only outperforms the non-topic counterpart, but also that each topic-aware model qualitatively and contextually gives the most relevant answer depending on the topic of question.
Nonnegative Matrix Factorization (NMF) aims to factorize a matrix into two optimized nonnegative matrices and has been widely used for unsupervised learning tasks such as product recommendation based on a rating matrix. However, although networks bet ween nodes with the same nature exist, standard NMF overlooks them, e.g., the social network between users. This problem leads to comparatively low recommendation accuracy because these networks are also reflections of the nature of the nodes, such as the preferences of users in a social network. Also, social networks, as complex networks, have many different structures. Each structure is a composition of links between nodes and reflects the nature of nodes, so retaining the different network structures will lead to differences in recommendation performance. To investigate the impact of these network structures on the factorization, this paper proposes four multi-level network factorization algorithms based on the standard NMF, which integrates the vertical network (e.g., rating matrix) with the structures of horizontal network (e.g., user social network). These algorithms are carefully designed with corresponding convergence proofs to retain four desired network structures. Experiments on synthetic data show that the proposed algorithms are able to preserve the desired network structures as designed. Experiments on real-world data show that considering the horizontal networks improves the accuracy of document clustering and recommendation with standard NMF, and various structures show their differences in performance on these two tasks. These results can be directly used in document clustering and recommendation systems.
In the Nonnegative Matrix Factorization (NMF) problem we are given an $n times m$ nonnegative matrix $M$ and an integer $r > 0$. Our goal is to express $M$ as $A W$ where $A$ and $W$ are nonnegative matrices of size $n times r$ and $r times m$ respec tively. In some applications, it makes sense to ask instead for the product $AW$ to approximate $M$ -- i.e. (approximately) minimize $ orm{M - AW}_F$ where $ orm{}_F$ denotes the Frobenius norm; we refer to this as Approximate NMF. This problem has a rich history spanning quantum mechanics, probability theory, data analysis, polyhedral combinatorics, communication complexity, demography, chemometrics, etc. In the past decade NMF has become enormously popular in machine learning, where $A$ and $W$ are computed using a variety of local search heuristics. Vavasis proved that this problem is NP-complete. We initiate a study of when this problem is solvable in polynomial time: 1. We give a polynomial-time algorithm for exact and approximate NMF for every constant $r$. Indeed NMF is most interesting in applications precisely when $r$ is small. 2. We complement this with a hardness result, that if exact NMF can be solved in time $(nm)^{o(r)}$, 3-SAT has a sub-exponential time algorithm. This rules out substantial improvements to the above algorithm. 3. We give an algorithm that runs in time polynomial in $n$, $m$ and $r$ under the separablity condition identified by Donoho and Stodden in 2003. The algorithm may be practical since it is simple and noise tolerant (under benign assumptions). Separability is believed to hold in many practical settings. To the best of our knowledge, this last result is the first example of a polynomial-time algorithm that provably works under a non-trivial condition on the input and we believe that this will be an interesting and important direction for future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا