ترغب بنشر مسار تعليمي؟ اضغط هنا

Milli-arcsecond astrophysics with VSI, the VLTI spectro-imager in the ELT era

131   0   0.0 ( 0 )
 نشر من قبل Fabien Malbet
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nowadays, compact sources like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes.

قيم البحث

اقرأ أيضاً

The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and s pectral resolutions up to R=12000. Targets as faint as K=13 will be imaged without requiring a brighter nearby reference object. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysic including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return.
The VLTI Spectro Imager project aims to perform imaging with a temporal resolution of 1 night and with a maximum angular resolution of 1 milliarcsecond, making best use of the Very Large Telescope Interferometer capabilities. To fulfill the scientifi c goals (see Garcia et. al.), the system requirements are: a) combining 4 to 6 beams; b) working in spectral bands J, H and K; c) spectral resolution from R= 100 to 12000; and d) internal fringe tracking on-axis, or off-axis when associated to the PRIMA dual-beam facility. The concept of VSI consists on 6 sub-systems: a common path distributing the light between the fringe tracker and the scientific instrument, the fringe tracker ensuring the co-phasing of the array, the scientific instrument delivering the interferometric observables and a calibration tool providing sources for internal alignment and interferometric calibrations. The two remaining sub-systems are the control system and the observation support software dedicated to the reduction of the interferometric data. This paper presents the global concept of VSI science path including the common path, the scientific instrument and the calibration tool. The scientific combination using a set of integrated optics multi-way beam combiners to provide high-stability visibility and closure phase measurements are also described. Finally we will address the performance budget of the global VSI instrument. The fringe tracker and scientific spectrograph will be shortly described.
We present the optical and cryo-mechanical solutions for the Spectrograph of VSI (VLTI Spectro-Imager), the second generation near-infrared (J, H and K bands) interferometric instrument for the VLTI. The peculiarity of this spectrograph is represente d by the Integrated Optics (IO) beam-combiner, a small and delicate component which is located inside the cryostat and makes VSI capable to coherently combine 4, 6 or even 8 telescopes. The optics have been specifically designed to match the IO combiner output with the IR detector still preserving the needed spatial and spectral sampling, as well as the required fringe spacing. A compact device that allows us to interchange spectral resolutions (from R=200 to R=12000), is also presented.
176 - R. M. Torres 2008
As part of an astrometric program, we have used the Very Long Baseline Array to measure the trigonometric parallax of several young stars in the Taurus and Ophiuchus star-forming regions with great accuracy. Additionally, we have obtained an unpreced ented sample of high-resolution (~ 1 mas) images of several young stellar systems. These images revealed that about 70% of the stars in our sample are very tight binary stars (with separations of a few mas). Since it is highly unlikely that 70% of all stars are such tight binaries, we argue that selection effects are at work.
The Joint Milli-Arcsecond Pathfinder Survey (JMAPS) mission is a Department of Navy (DoN) space-based, all-sky astrometric bright star survey. JMAPS is currently funded for flight, with at 2012 launch date. JMAPS will produce an all-sky astrometric, photometric and spectroscopic catalog covering the magnitude range of 1-12, with extended results through 15th magnitude at an accuracy of 1 milliarcsecond (mas) positional accuracy at a mean observing epoch of approximately 2013. Using Hipparcos and Tycho positional data from 1991, proper motions with accuracies of 100 microarcseconds (umas) per year should be achievable for all of the brightest stars, with the result that the catalog will degrade at a much reduced rate over time when compared with the Hipparcos catalog. JMAPS will accomplish this with a relatively modest aperture, very high accuracy astrometric telescope flown in low earth orbit (LEO) aboard a microsat. Mission baseline is for a three-year mission life (2012-2015) in a 900 km sun synchronous terminator orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا