ترغب بنشر مسار تعليمي؟ اضغط هنا

A First Estimate Of The X-Ray Binary Frequency As A Function Of Star Cluster Mass In A Single Galactic System

114   0   0.0 ( 0 )
 نشر من قبل David Clark
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the previously-identified 15 infrared star-cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, eta, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to K_s luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of eta and find it varies by less than a factor of four. We find a mean value of eta for these different distributions of eta = 1.7 x 10^-8 M_sun^-1 with sigma_eta = 1.2 x 10^-8 M_sun^-1. Performing a chi^2 test, we demonstrate eta could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in eta are factors of a few, we believe this is the first estimate made of this quantity to ``order of magnitude accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.

قيم البحث

اقرأ أيضاً

The observed relation between the X-ray and radio properties of low-luminosity accreting black holes has enabled the identification of multiple candidate black hole X-ray binaries (BHXBs) in globular clusters. Here we report an identification of the radio source VLA J213002.08+120904 (aka M15 S2), recently reported in Kirsten et al. 2014, as a BHXB candidate. They showed that the parallax of this flat-spectrum variable radio source indicates a 2.2$^{+0.5}_{-0.3}$ kpc distance, which identifies it as lying in the foreground of the globular cluster M15. We determine the radio characteristics of this source, and place a deep limit on the X-ray luminosity of $sim4times10^{29}$ erg s$^{-1}$. Furthermore, we astrometrically identify a faint red stellar counterpart in archival Hubble images, with colors consistent with a foreground star; at 2.2 kpc its inferred mass is 0.1-0.2 $M_{odot}$. We rule out that this object is a pulsar, neutron star X-ray binary, cataclysmic variable, or planetary nebula, concluding that VLA J213002.08+120904 is the first accreting black hole X-ray binary candidate discovered in quiescence outside a globular cluster. Given the relatively small area over which parallax studies of radio sources have been performed, this discovery suggests a much larger population of quiescent BHXBs in our Galaxy, $2.6times10^4-1.7times10^8$ BHXBs at $3sigma$ confidence, than has been previously estimated ($sim10^2-10^4$) through population synthesis.
Two nights of phase-resolved medium resolution VLT spectroscopy of the extra-galactic low mass X-ray binary LMC X-2 have revealed a 0.32+/-0.02 day spectroscopic period in the radial velocity curve of the HeII lambda4686 emission line that we interpr et as the orbital period. However, similar to previous findings, this radial velocity curve shows a longer term variation that is most likely due to the presence of a precessing accretion disk in LMC X-2. This is strengthened by HeII lambda4686 Doppler maps that show a bright spot that is moving from night to night. Furthermore, we detect narrow emission lines in the Bowen region of LMC X-2,with a velocity of K_em=351+/-28 km/s, that we tentatively interpret as coming from the irradiated side of the donor star. Since K_em must be smaller than K_2, this leads to the first upper-limit on the mass function of LMC X-2 of f(M_1)>=0.86Msun (95% confidence), and the first constraints on its system parameters.
148 - Y. Q. Xue , X. C. Zheng , Y. Li 2019
Neutron star-neutron star mergers are known to be associated with short gamma-ray bursts. If the neutron star equation of state is sufficiently stiff, at least some of such mergers will leave behind a supramassive or even a stable neutron star that s pins rapidly with a strong magnetic field (i.e., a magnetar). Such a magnetar signature may have been observed as the X-ray plateau following a good fraction (up to 50%) of short gamma-ray bursts, and it has been expected that one may observe short gamma-ray burst-less X-ray transients powered by double neutron star mergers. A fast X-ray transient (CDF-S XT1) was recently found to be associated with a faint host galaxy whose redshift is unknown. Its X-ray and host-galaxy properties allow several possibleexplanations including a short gamma-ray burst seen off axis, a low-luminosity gamma-ray burst at high redshift, or a tidal disruption event involving an intermediate mass black hole and a white dwarf. Here we report a second X-ray transient, CDF-S XT2, that is associated with a galaxy at redshift z = 0.738. The light curve is fully consistent with being powered by a millisecond magnetar. More intriguingly, CDF-S XT2 lies in the outskirts of its star-forming host galaxy with a moderate offset from the galaxy center, as short bursts often do. The estimated event rate density of similar X-ray transients, when corrected to the local value, is consistent with the double neutron star merger rate density inferred from the detection of GW170817.
We report the analysis of the first superburst from a transiently accreting neutron star system with the All-Sky Monitor (ASM) on the Rossi X-ray Timing Explorer. The superburst occurred 55 days after the onset of an accretion outburst in 4U 1608-522 . During that time interval, the accretion rate was at least 7% of the Eddington limit. The peak flux of the superburst is 22 to 45% of the Eddington limit, and its radiation energy output is between 4e41 and 9e41 erg for a distance of 3.2 kpc. Fits of cooling models to the superburst light curve indicate an ignition column depth between 1.5e12 and 4.1e12 g/cm2. Extrapolating the accretion history observed by the ASM, we derive that this column was accreted over a period of 26 to 72 years. The superburst characteristics are consistent with those seen in other superbursting low-mass X-ray binaries. However, the transient nature of the hosting binary presents significant challenges for superburst theory, requiring additional ingredients for the models. The carbon that fuels the superburst is thought to be produced mostly during the accretion outbursts and destroyed in the frequent type-I X-ray bursts. Mixing and sedimentation of the elements in the neutron star envelope may significantly influence the balance between the creation and destruction of carbon. Furthermore, predictions for the temperature of the neutron star crust fail to reach the values required for the ignition of carbon at the inferred column depth.
154 - M. P. Muno , J. R. Lu 2005
Recent X-ray and radio observations have identified a transient low-mass X-ray binary (LMXB) located only 0.1 pc in projection from the Galactic center, CXOGC J174540.0-290031. In this paper, we report the detailed analysis of X-ray and infrared obse rvations of the transient and its surroundings. Chandra bservations detect the source at a flux of F_X = 2e-12 erg cm^-2 s^-1 (2-8 keV). After accounting for absorption both in the interstellar medium and in material local to the source, the implied luminosity of the source is only L_X = 4e34 erg/s (2-8 keV; D=8 kpc). However, the diffuse X-ray emission near the source also brightened by a factor of 2. The enhanced diffuse X-ray emission lies on top of a known ridge of dust and ionized gas that is visible infrared images. We interpret the X-ray emission as scattered flux from the outburst, and determine that the peak luminosity of CXOGC J174540.0-290031 was >2e36 erg/s. We suggest that the relatively small observed flux results from the fact that the system is observed nearly edge-on, so that the accretion disk intercepts most of the flux emitted along our line of sight. We compare the inferred peak X-ray luminosity to that of the radio jet. The ratio of the X-ray to radio luminosities, L_X/L_R<1e4, is considerably smaller than in other known LMXBs (> 1e5). This is probably because the jets are radiating with unusually high efficiency at the point where they impact the surrounding interstellar medium. This hypothesis is supported by a comparison with mid-infrared images of the surrounding dust. Finally, we find that the minimum power required to produce the jet, L_jet~1e37 erg/s, is comparable to the inferred peak X-ray luminosity. This is the most direct evidence yet obtained that LMXBs accreting at low rates release about half of their energy as jets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا