ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-monotonic pseudo-gap in high-Tc cuprates

102   0   0.0 ( 0 )
 نشر من قبل Alexander Kordyuk
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanism of high temperature superconductivity is not resolved for so long because the normal state of cuprates is not yet understood. Here we show that the normal state pseudo-gap exhibits an unexpected non-monotonic temperature dependence, which rules out the possibility to describe it by a single mechanism such as superconducting phase fluctuations. Moreover, this behaviour, being remarkably similar to the behaviour of the charge ordering gap in the transition-metal dichalcogenides, completes the correspondence between these two classes of compounds: the cuprates in the PG state and the dichalcogenides in the incommensurate charge ordering state reveal virtually identical spectra of one-particle excitations as function of energy, momentum and temperature. These results suggest that the normal state pseudo-gap, which was considered to be very peculiar to cuprates, seems to be a general complex phenomenon for 2D metals. This may not only help to clarify the normal state electronic structure of 2D metals but also provide new insight into electronic properties of 2D solids where the metal-insulator and metal-superconductor transitions are considered on similar basis as instabilities of particle-hole and particle-particle interaction, respectively.

قيم البحث

اقرأ أيضاً

We have studied the doping dependence of the in-plane and out-of-plane superfluid density, rho^s(0), of two monolayer high-Tc superconductors, HgBa_2CuO_{4+delta} and La_{2-x}Sr_xCuO_4, using the low frequency ac-susceptibility and the muon spin rela xation techniques. For both superconductors, rho^s(0) increases rapidly with doping in the under- and optimally doped regime and becomes nearly doping independent above a critical doping, p_c = 0.20.
364 - R. Arouca , E. C. Marino 2020
We show that the resistivity in each phase of the High-Tc cuprates is a special case of a general expression derived from the Kubo formula. We obtain, in particular, the T-linear behavior in the strange metal (SM) and upper pseudogap (PG) phases, the pure $T^2$, Fermi liquid (FL) behavior observed in the strongly overdoped regime as well as the $T^{1+delta}$ behavior that interpolates both in the crossover. We calculate the coefficients: a) of $T$ in the linear regime and show that it is proportional to the PG temperature $T^*(x)$; b) of the $T^2$-term in the FL regime, without adjusting any parameter; and c) of the $T^{1.6}$ term in the crossover regime, all in excellent agreement with the experimental data. From our model, we are able to infer that the resistivity in cuprates is caused by the scattering of holes by excitons, which naturally form as holes are doped into the electron background.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x single crystals. The fluctuation conductivity is found to vanish nearly exponentially with temperature, allowing us to determine precisely the field Hc(T) and the temperature Tc above which the SCFs are fully suppressed. Tc is always found much smaller than the pseudogap temperature. A careful investigation near optimal doping shows that Tc is higher than the pseudogap T*, which indicates that the pseudogap cannot be assigned to preformed pairs. For nearly optimally doped samples, the fluctuation conductivity can be accounted for by gaussian fluctuations following the Ginzburg-Landau scheme. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be quite similar to Hc(0) and to increase with hole doping. Studies of the incidence of disorder on both Tc and T* enable us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.
Explaining the mechanism of superconductivity in the high-$T_c$ cuprates requires an understanding of what causes electrons to form Cooper pairs. Pairing can be mediated by phonons, the screened Coulomb force, spin or charge fluctuations, excitons, o r by a combination of these. An excitonic pairing mechanism has been postulated, but experimental evidence for coupling between conduction electrons and excitons in the cuprates is sporadic. Here we use resonant inelastic x-ray scattering (RIXS) to monitor the temperature dependence of the $underline{d}d$ exciton spectrum of Bi$_2$Sr$_2$CaCu$_2$O$_{8-x}$ (Bi-2212) crystals with different charge carrier concentrations. We observe a significant change of the $underline{d}d$ exciton spectra when the materials pass from the normal state into the superconductor state. From theoretical modeling, we determine the strength of the coupling between the electrons and the excitons. Our observations show that the coupling to excitons can be strong enough to play an important role in stabilizing the superconducting state.
101 - S. Cojocaru , R. Citro , 2009
We analyse a model where the anomalies of the bond-stretching LO phonon mode are caused by the coupling to electron dynamic response in the form of a damped oscillator and explore the possibility to reconstruct the spectrum of the latter from the pho non measurements. Preliminary estimates point to its location in the mid infrared region and we show how the required additional information can be extracted from the oxygen isotope effect on the phonon spectrum. The model predicts a significant measurable deviation from the standard value of the isotope effect even if the phonon frequency is far below the electron spectrum, provided the latter is strongly incoherent. In this regime, which corresponds to the mid infrared scenario, the phonon linewidth becomes a sensitive and informative probe of the isotope effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا