ﻻ يوجد ملخص باللغة العربية
Variational turbulence is among the few approaches providing rigorous results in turbulence. In addition, it addresses a question of direct practical interest, namely the rate of energy dissipation. Unfortunately, only an upper bound is obtained as a larger functional space than the space of solutions to the Navier-Stokes equations is searched. Yet, in general, this upper bound is in good agreement with experimental results in terms of order of magnitude and power law of the imposed Reynolds number. In this paper, the variational approach to turbulence is extended to the case of dynamo action and an upper bound is obtained for the global dissipation rate (viscous and Ohmic). A simple plane Couette flow is investigated. For low magnetic Prandtl number $P_m$ fluids, the upper bound of energy dissipation is that of classical turbulence (i.e. proportional to the cubic power of the shear velocity) for magnetic Reynolds numbers below $P_m^{-1}$ and follows a steeper evolution for magnetic Reynolds numbers above $P_m^{-1}$ (i.e. proportional to the shear velocity to the power four) in the case of electrically insulating walls. However, the effect of wall conductance is crucial : for a given value of wall conductance, there is a value for the magnetic Reynolds number above which energy dissipation cannot be bounded. This limiting magnetic Reynolds number is inversely proportional to the square root of the conductance of the wall. Implications in terms of energy dissipation in experimental and natural dynamos are discussed.
Plane Couette flow transitions to turbulence for Re~325 even though the laminar solution with a linear profile is linearly stable for all Re (Reynolds number). One starting point for understanding this subcritical transition is the existence of invar
We consider a 9-PDE (1-space and 1-time) model of plane Couette flow in which the degrees of freedom are severely restricted in the streamwise and cross-stream directions to study spanwise localisation in detail. Of the many steady Eckhaus (spanwise
Plane Couette flow presents a regular oblique turbulent-laminar pattern over a wide range of Reynolds numbers R between the globally stable base flow profile at low R<R_g and a uniformly turbulent regime at sufficiently large R>R_t. The numerical sim
We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share the topology of known periodic solutions but are localized in space. Solutions of different size are organized in a snakes-and-ladders structure stri
We present ten new equilibrium solutions to plane Couette flow in small periodic cells at low Reynolds number (Re) and two new traveling-wave solutions. The solutions are continued under changes of Re and spanwise period. We provide a partial classif