ترغب بنشر مسار تعليمي؟ اضغط هنا

On completely positive non-Markovian evolution of a d-level system

68   0   0.0 ( 0 )
 نشر من قبل Jacek Jurkowski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A sufficient condition for non-Markovian master equation which ensures the complete positivity of the resulting time evolution is presented.

قيم البحث

اقرأ أيضاً

We address memory effects in the dynamics of a two-level open quantum system interacting with a classical fluctuating field via dipole interaction. In particular, we study the backflow of information for a field with a Lorentzian spectrum, and reveal the existence of two working regimes, where memory effects are governed either by the energy gap of the two-level system, or by the interaction energy. Our results shows that non-Markovianity increases with time, at variance with the results obtained for dephasing and despite the dissipative nature of the interaction, thus suggesting that the corresponding memory effects might be observed in practical scenarios.
We investigate the evolution of open quantum systems in the presence of initial correlations with an environment. Here the standard formalism of describing evolution by completely positive trace preserving (CPTP) quantum operations can fail and non-c ompletely positive (non-CP) maps may be observed. A new classification of correlations between a system and environment using quantum discord is explored. However, we find quantum discord is not a symmetric quantity between exchange of systems and this leads to ambiguity in classifications - states which are both quantum and classically correlated depending on the order of the two systems. State preparation in quantum process tomography is investigated with regard to non-CP maps. In SQPT the preparation procedure can influence the complete-positivity of the reconstructed quantum operation if our system is initially correlated with an environment. We examine a recently proposed preparation procedures using projective measurements, and propose our own protocol that uses a single measurement followed by unitary rotations. The former can give rise to non-CP evolution while the later will always give rise to a CP map. State preparation in AAPT was found always to give rise to CP evolution. We examine the effect of statistical noise in process tomography and find it can result in the identification of a non-CP when the evolution should be CP. The variance of the distribution for reconstructed processes is found to be inversely proportional to the number of copies of a state used to perform tomography. Finally, we detail an experiment using currently available linear optics QC devices to demonstrate non-CP maps arising in SQPT.
We study non-Markovian dynamics of a two level atom using pseudomode method. Because of the memory effect of non-Markovian dynamics, the atom receives back information and excited energy from the reservoir at a later time, which causes more complicat ed behaviors than Markovian dynamics. With pseudomode method, non-Markovian dynamics of the atom can be mapped into Markovian dynamics of the atom and pseudomode. We show that by using pseudomode method and quantum jump approach for Markovian dynamics, we get a physically intuitive insight into the memory effect of non-Markovian dynamics. It suggests a simple physical meaning of the memory time of a non-Markovian reservoir.
Non-Markovian reduced dynamics of an open system is investigated. In the case the initial state of the reservoir is the vacuum state, an approximation is introduced which makes possible to construct a reduced dynamics which is completely positive.
We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed ancillas, which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of memory depth where these correlations are established between the system and a suitably sized memory rendering the overall system+memory evolution Markovian. We extend our analysis to show that while most system-environment correlations are irrelevant for the dynamical characterization of the process, they generally play an important role in the thermodynamic description. Finally, we show that under an energy-preserving system-environment interaction, a non-monotonic time behaviour of the heat flux serves as an indicator of non-Markovian behaviour.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا